Beaucoup de béotiens et quelques philosophes se moquèrent fort de ces expériences et de Gauss. Ils déclarèrent, avec le catégorisme apriorique qu'on rencontre parfois chez les uns et les autres, que les mesures même si elles avaient eu un autre résultat n'auraient rien prouvé contre les théorèmes d'Euclide, mais établi seulement que quelque cause perturbatrice incurvait les rayons lumineux entre les trois sommets du triangle. C'est exact, mais cela ne signifie rien.

Si Gauss avait trouvé que la somme des angles du triangle étudié dépassait deux droits, cela aurait prouvé que la géométrie réelle n'était pas celle d'Euclide. La question que s'était posée Gauss était pleine de profondeur et de sens. Les béotiens et quelques philosophes qui le conspuèrent eussent pu être mis au défi de définir les lignes droites réelles, les lignes droites naturelles autrement que par les trajets de la lumière.

Si Gauss n'a pas trouvé que la somme des angles fût différente de deux droits c'est parce que ses mesures étaient trop peu précises. Si elles avaient été beaucoup plus exactes, ou s'il avait pu opérer sur un triangle plus grand, dont les sommets eussent été la Terre, Jupiter en opposition et une autre planète, il eût trouvé une différence notable.

L'Univers réel n'est donc pas euclidien. Il n'est à peu près euclidien que dans les régions de l'espace où la lumière se propage rectilignement, c'est-à-dire aux endroits très éloignés de toute masse gravitante, tel celui où nous avions plus haut abandonné l'obus de Jules Verne.

Bien d'autres raisons encore font que, par suite de la gravitation, l'Univers n'est pas conforme à la géométrie d'Euclide.

Exemple: Dans cette géométrie la longueur de la circonférence est avec son diamètre dans un certain rapport bien connu et qui est désigné par la lettre grecque π. Ce rapport qui exprime combien de fois le diamètre est compris dans la circonférence est égal à 3,14159265... etc... j'en passe car π possède un nombre infini de décimales. Alors voici la question: Dans la pratique, le rapport des circonférences à leurs diamètres est-il réellement égal à la valeur classique de π? Par exemple le rapport de la circonférence de la Terre[10] à son diamètre a-t-il précisément cette valeur? Selon Einstein, la réponse est non, et en voici la preuve: Imaginons que deux géodésiens, deux arpenteurs très habiles, très rapides et un peu magiciens, se proposent de mesurer la circonférence et le diamètre de la Terre à l'Équateur. Ils sont munis de règles graduées identiques. Ils commencent leurs mesures en même temps et en partant du même point de l'Équateur. Seulement l'un se dirige vers l'Ouest, l'autre vers l'Est et leurs vitesses sont égales et telles que celui qui va vers l'Ouest annule en quelque sorte la rotation de la Terre et voit toute la journée le Soleil immobile à la même hauteur au-dessus de l'horizon. Ainsi, dans les music-halls, on voit parfois un jongleur qui, marchant sur une boule en mouvement, reste cependant au sommet de la boule parce que la vitesse de ses pas est exactement égale et contraire au déplacement de la surface sphérique.

[10] Nous supposons bien entendu la Terre parfaitement circulaire et sans aspérités.

Un observateur immobile dans l'espace, par exemple sur le Soleil, verra donc immobile, en face de lui, celui de nos deux arpenteurs qui se dirige vers l'Ouest. Au contraire, celui qui va vers l'Est lui paraîtra tourner autour de la Terre et deux fois plus vite que s'il était resté à son point de départ.

Nos deux arpenteurs lorsqu'ils auront, à la même vitesse, achevé chacun de son côté de mesurer le tour de la Terre, auront-ils trouvé la même longueur? Évidemment non. Car, comme le constate le sur-observateur placé dans le Soleil, le mètre de l'arpenteur qui va à l'Est est raccourci par sa vitesse, en vertu, nous l'avons montré, de la contraction Fitzgerald-Lorentz. Au contraire le mètre de l'arpenteur qui va à l'Ouest ne subit pas cette contraction, ainsi que le constate le sur-observateur solaire, par rapport à qui il est immobile.

Par conséquent les deux arpenteurs trouvent pour le diamètre terrestre des nombres différents, et celui qui se dirige vers l'Ouest trouve un nombre de mètres plus petit que l'autre. D'autre part il est évident que lorsqu'ils mesurent ensuite le diamètre terrestre en le parcourant à la même vitesse, nos deux observateurs trouveront pour ce diamètre deux valeurs identiques.