Là est la raison profonde pour laquelle l'«Intervalle» einsteinien des choses, quantité invariable, «Invariant», doit rester le même par rapport à tous les observateurs quelles que soient leurs vitesses, et en particulier pour les observateurs animés de vitesses équivalentes, en un lieu donné, aux effets de la gravitation.
Mais alors les déductions que nous avons tirées de l'expérience de Michelson, relativement à l'aspect des phénomènes pour des observateurs en translations uniformes différentes, ne suffisent plus à nous rendre compte de toute la réalité. Elles ont besoin d'être complétées de sorte que l'invariant universel, l'«Intervalle» des choses, reste tel pour un observateur en mouvement quelconque.
Si je traverse une rue à une vitesse inouïe, mais d'un mouvement uniforme, son aspect général, par suite de la contraction due à ma vitesse, pourra être pour moi un peu différent de ce qu'il m'apparaîtrait si j'étais immobile[11]. Les maisons par exemple me paraîtront plus étroites en proportion de leur hauteur. Cependant l'aspect et les proportions générales des objets, seront à peu près les mêmes dans les deux cas, et auront quelque chose de commun. C'est ainsi que les becs de gaz m'apparaîtront plus minces, mais ils seront toujours droits.
[11] Il va sans dire qu'on suppose ici l'observateur muni d'une rétine à impressions instantanées.
Il en sera tout autrement si l'observateur est animé de mouvements variés quelconques, s'il est par exemple un ivrogne, un ivrogne merveilleux capable de tituber à des vitesses prodigieuses. Pour cet ivrogne, la rue qu'il parcourt aura un aspect tout nouveau. Les becs de gaz ne lui paraîtront plus droits, mais gondolés en zigzags qui reproduiront, en sens inverse, les zigzags qu'il décrit en titubant. Cela est si vrai que les caricaturistes ont l'habitude de représenter en lignes follement sinueuses les arbres, lampadaires et maisons vues par un ivrogne.
Notre homme sera d'ailleurs persuadé que les objets ont bien réellement la forme zigzagante qu'il leur voit, et que cette forme change à chacun de ses pas. Essayez de le persuader que c'est lui qui danse et non pas les réverbères; essayez de lui montrer que c'est lui qui ne marche pas droit et non le chien qu'il tient... ou plutôt qui le tient en laisse. Il n'en croira rien, et ma foi, du point de vue de la relativité généralisée, il aura raison ni plus ni moins que vous.
Pourtant il y a quelque chose qui, dans l'aspect du monde doit rester commun à l'ivrogne et au buveur d'eau.
Si l'Univers tout entier était soudain noyé dans une masse de gélatine qui se prenne en gelée, et que l'on torde, comprime, déforme d'une manière quelconque cette masse gélatineuse, il y aurait quelque chose qui resterait pourtant inaltéré dans ce coagulum. Quel est ce quelque chose, quel est le calcul qu'il faut lui appliquer? La réponse à ces questions constituait la dernière étape à franchir par Einstein pour pouvoir établir les équations de la gravitation et de la relativité généralisée.
Ici c'est le génie pénétrant d'Henri Poincaré qui a réellement tracé la voie. Il est d'autant plus nécessaire d'y insister que justice n'a pas été rendue sur ce point à l'illustre savant français.