Si tous les corps de l'Univers venaient à se dilater simultanément et dans la même proportion, nous n'aurions aucun moyen de le savoir. Nos instruments et nous-mêmes étant dilatés pareillement, nous ne nous apercevrions pas de ce formidable événement historique et cosmique, qui ne nous arracherait pas même un instant à nos petites contingences ridicules.
Il y a plus: non seulement les mondes seront indiscernables s'il se modifient de sorte que soit changée l'échelle des longueurs et des temps; mais ils seront encore indiscernables si, à chaque point de l'un, correspond un point et un seul de l'autre et si, à chaque objet, à chaque événement du premier monde, en correspond un de même nature placé précisément au point correspondant du second. Or, les déformations successives et quelconques que l'on fait subir à la masse gélatineuse où nous avons incorporé plus haut et métaphoriquement l'Univers tout entier, nous fournissent précisément des mondes indiscernables à ce point de vue. Poincaré a la gloire d'avoir attiré l'attention là-dessus et montré que la relativité des choses doit être entendue dans ce sens très large.
Le continuum amorphe et déformable, où nous plaçons l'Univers, possède un certain nombre de propriétés exemptes de toute idée de mesure. L'étude de ces propriétés fait l'objet d'une géométrie particulière, d'une géométrie qualitative. Les théorèmes de cette géométrie ont ceci de singulier, qu'ils resteraient vrais même si les figures étaient copiées par un dessinateur malhabile qui altérerait grossièrement toutes les proportions et qui remplacerait les droites par des lignes irrégulières et sinueuses.
Telle est la géométrie que, suivant l'indication géniale de Poincaré, il sied d'appliquer à ce continuum à quatre dimensions et plus ou moins euclidien, selon ses points, qu'est l'Univers einsteinien. Cette géométrie est précisément celle qui énonce ce qu'il y a de commun entre les formes particulières des objets vues par notre ivrogne et notre buveur d'eau de tout à l'heure.
C'est dans cette voie, ou plutôt dans une voie parallèle à celle-là, qu'Einstein a finalement obtenu le succès. L'Univers étant un continuum plus ou moins incurvé, il a eu l'idée de lui appliquer la géométrie que Gauss a créée pour l'étude des surfaces à courbure variable et que Riemann a généralisée. C'est au moyen de cette géométrie particulière qu'on a exprimé le fait que l'«Intervalle» des événements est un invariant.
Voici maintenant une image qui, je pense, va nous guider au cœur même du problème de la gravitation et jusqu'à sa solution.
Considérons une surface à courbure variable, par exemple, la surface d'un coin de la France avec ses collines, ses montagnes, ses vallonnements. En parcourant ce pays en tous sens, nous pourrons aller en ligne droite tant que nous sommes en plaine. La ligne droite en plaine unie a ceci de remarquable qu'elle est le chemin le plus court entre deux points. Elle a aussi ceci de particulier qu'elle est, entre ces deux points, seule de son espèce et ayant sa longueur, tandis que l'on peut tracer un très grand nombre de lignes non droites réunissant aussi ces deux points, plus longue que la ligne droite mais toutes d'égale longueur.
Mais nous voici arrivés dans la région des collines. Il nous est maintenant impossible pour passer d'un point à un autre, séparés par une colline, de marcher suivant une ligne droite. Comme que nous fassions, notre trajet sera courbe. Mais parmi les divers chemins possibles qui nous mènent d'un point à l'autre par dessus la colline, il en est un, et un seul en général, qui est plus court que tous les autres, ainsi que nous pouvons le constater avec un cordeau. Ce chemin le plus court, seul de son espèce, est ce qu'on appelle la géodésique de la surface traversée.
Pareillement, pour aller de Lisbonne à New-York, aucun navire ne peut marcher en ligne droite. Tous doivent faire un trajet incurvé, à cause de la rotondité terrestre. Mais parmi les trajets incurvés possibles, il en est un privilégié, plus court que tous les autres, c'est celui qui suit la direction d'un grand cercle de la Terre. Pour aller de Lisbonne à New-York, qui sont pourtant à peu près sur le même parallèle, les vaisseaux se gardent bien de cingler droit vers l'Ouest dans la direction des parallèles. Ils cinglent un peu vers le Nord-Ouest, de façon à arriver à New-York en venant du Nord-Est, et à suivre à peu près un grand cercle terrestre. Sur notre globe, comme sur toutes les sphères, la géodésique, le plus court chemin entre deux points, est l'arc de grand cercle passant par ces deux points.