Ainsi sur toutes les surfaces courbes, on peut, d'un point à un autre, tracer une ligne privilégiée de longueur minima, une géodésique qui est, sur ces surfaces, l'analogue de la ligne droite dans le plan.

Eh! bien l'«Intervalle» de deux points dans l'Univers à quatre dimensions (à un signe algébrique près) représente exactement la géodésique, la ligne de trajet minimum tracée dans l'Univers entre ces deux points. Là où l'Univers est incurvé, cette géodésique est une ligne courbe. Là où l'Univers est à peu près euclidien, elle est une ligne droite.

On me dira à ce propos qu'il est bien difficile de se représenter comme incurvé un espace à trois, et a fortiori à quatre dimensions. J'en conviens. Nous avons vu qu'il est déjà assez difficile de se représenter l'espace à quatre dimensions même s'il n'est pas incurvé.

Qu'est-ce que cela prouve? Il y a dans la nature bien d'autres choses que nous ne pouvons pas nous représenter, c'est-à-dire dont nous ne pouvons pas nous former une image visuelle. Les ondes hertziennes, les rayons X, les ondes ultra-violettes en existent-elles moins parce que nous ne pouvons pas nous les figurer, ou que du moins nous ne le pouvons qu'en leur attribuant une forme visible qui précisément leur manque. Certes, c'est une des faiblesses de l'infirmité humaine que de ne rien concevoir que ce qui est imagé. De là cette tendance qui nous porte à tout visualiser (si j'ose risquer ici ce mot inélégant, mais expressif).

Revenons donc à nos géodésiques. Celles-ci nous pouvons très bien nous les représenter, car elles sont dans l'Univers, en dépit de ses quatre dimensions, des lignes à une seule dimension pareilles à toutes les lignes que nous connaissons.

L'existence des géodésiques, des lignes de plus courte distance, va nous dévoiler avec éclat la liaison qui, dans le monde euclidien de la science classique, n'était pas apparue, entre l'inertie et la pesanteur. De là était né le distinguo newtonien entre le principe d'inertie et la force gravitante.

Pour nous relativistes, ce distinguo n'est maintenant plus nécessaire. Les masses matérielles, comme la lumière, se propagent en ligne droite loin de tout champ de gravitation, et en ligne courbe près des masses gravitantes. Par raison de symétrie, un point matériel libre ne peut suivre dans l'Univers qu'une géodésique.

Si alors on considère que la force gravitante invoquée par Newton n'existe pas—et une telle action à distance est bien hypothétique,—si on considère que dans l'espace vide il n'y a que des objets librement abandonnés à eux-mêmes, on est irrésistiblement amené à l'énoncé suivant qui réunit sous une forme simple ces sœurs autrefois séparées, l'inertie et la pesanteur. Tout mobile abandonné librement à lui-même décrit dans l'Univers une géodésique.

Loin des astres massifs, cette géodésique est une ligne droite parce que l'Univers y est à peu près euclidien. Près des astres elle est une ligne courbe, parce que l'Univers n'y est plus euclidien.