Tant qu'une solution de leur chiffre ne viendra pas les convaincre de leur erreur, nos correspondants supposés s'en tiendront à ce dernier arrangement, comme offrant toute sécurité. Sinon, ils imagineront peut-être un système de signes arbitraires remplaçant les caractères usuels. Par exemple:

( pourrait signifier a . b , c ; d ) e, etc.

Une lettre composée de pareils signes aurait incontestablement une apparence fort rébarbative. Si toutefois ce système ne leur donnait pas pleine satisfaction, ils pourraient imaginer un alphabet toujours changeant, et le réaliser de cette manière:

Prenons deux morceaux de carton circulaires, différant de diamètre entre eux d'un demi-pouce environ. Plaçons le centre du plus petit carton sur le centre du plus grand, en les empêchant pour un instant de glisser; le temps de tirer des rayons du centre commun à la circonférence du petit cercle, et de les étendre à celle du plus grand. Tirons vingt-six rayons, formant sur chaque carton vingt-six compartiments. Dans chacun de ces compartiments sur le cercle inférieur écrivons une des lettres de l'alphabet, qui se trouvera ainsi employé tout entier; écrivons-les au hasard, cela vaudra mieux. Faisons la même chose sur le cercle supérieur. Maintenant faisons tourner une épingle à travers le centre commun, et laissons le cercle supérieur tourner avec l'épingle, pendant que le cercle inférieur est tenu immobile. Arrêtons la révolution du cercle supérieur, et écrivons notre lettre en prenant pour a la lettre du plus petit cercle qui correspond à l'a du plus grand, pour b, la lettre du plus petit cercle qui correspond au b du plus grand, et ainsi de suite. Pour qu'une lettre ainsi écrite puisse être lue par la personne à qui elle est destinée, une seule chose est nécessaire, c'est qu'elle ait en sa possession des cercles identiques à ceux que nous venons de décrire, et qu'elle connaisse deux des lettres (une du cercle inférieur et une du cercle supérieur) qui se trouvaient juxtaposées, au moment où son correspondant a écrit son chiffre. Pour cela, elle n'a qu'à regarder les deux lettres initiales du document qui lui serviront de clef. Ainsi, en voyant les deux lettres a m au commencement, elle en conclura qu'en faisant tourner ses cercles de manière à faire coïncider ces deux lettres, elle obtiendra l'alphabet employé.

A première vue, ces différents modes de cryptographie ont une apparence de mystère indéchiffable. Il paraît presque impossible de démêler le résultat de combinaisons si compliquées. Pour certaines personnes en effet ce serait une extrême difficulté, tandis que pour d'autres qui sont habiles à déchiffrer, de pareilles énigmes sont ce qu'il y a de plus simple. Le lecteur devra se mettre dans la tête que tout l'art de ces solutions repose sur les principes généraux qui président à la fonction du langage lui-même, et que par conséquent il est entièrement indépendant des lois particulières qui régissent un chiffre quelconque, ou la construction de sa clef. La difficulté de déchiffrer une énigme cryptographique n'est pas toujours en rapport avec la peine qu'elle a coûtée, ou l'ingéniosité qu'a exigée sa construction. La clef, en définitive, ne sert qu'à ceux qui sont au fait du chiffre; la tierce personne qui déchiffre n'en a aucune idée. Elle force la serrure. Dans les différentes méthodes de cryptographie que j'ai exposées, on observera qu'il y a une complication graduellement croissante. Mais cette complication n'est qu'une ombre: elle n'existe pas en réalité. Elle n'appartient qu'à la composition du chiffre, et ne porte en aucune façon sur sa solution. Le dernier système n'est pas du tout plus difficile à déchiffrer que le premier, quelle que puisse être la difficulté de l'un ou de l'autre.

En discutant un sujet analogue dans un des journaux hebdomadaires de cette ville, il y a dix-huit mois environ, l'auteur de cet article a eu l'occasion de parler de l'application d'une méthode rigoureuse dans toutes les formes de la pensée,—des avantages de cette méthode—de la possibilité d'en étendre l'usage à ce que l'on considère comme les opérations de la pure imagination—et par suite de la solution de l'écriture chiffrée. Il s'est aventuré jusqu'à déclarer qu'il se faisait fort de résoudre tout chiffre, analogue à ceux dont je viens de parler, qui serait envoyé à l'adresse du journal. Ce défi excita, de la façon la plus inattendue, le plus vif intérêt parmi les nombreux lecteurs de cette feuille. Des lettres arrivèrent de toutes parts à l'éditeur; et beaucoup de ceux qui les avaient écrites étaient si convaincus de l'impénétrabilité de leurs énigmes qu'ils ne craignirent pas de l'engager dans des paris à ce sujet. Mais en même temps, ils ne furent pas toujours scrupuleux sur l'article des conditions. Dans beaucoup de cas les cryptographies sortaient complètement des limites fixées. Elles employaient des langues étrangères. Les mots et les phrases se confondaient sans intervalles. On employait plusieurs alphabets dans un même chiffre. Un de ces messieurs, d'une conscience assez peu timorée, dans un chiffre composé de barres et de crochets, étrangers à la plus fantastique typographie, alla jusqu'à mêler ensemble au moins sept alphabets différents, sans intervalles entre les lettres, ou même entre les lignes. Beaucoup de ces cryptographies étaient datées de Philadelphie, et plusieurs lettres qui insistaient sur le pari furent écrites par des citoyens de cette ville. Sur une centaine de chiffres, peut-être reçus en tout, il n'y en eut qu'un que nous ne parvînmes pas immédiatement à résoudre. Nous avons démontré que ce chiffre était une imposture—c'est-à-dire un jargon composé au hasard et n'ayant aucun sens. Quant à l'épître des sept alphabets, nous eûmes le plaisir d'ahurir son auteur par une prompte et satisfaisante traduction.

Le journal en question fut, pendant plusieurs mois, grandement occupé par ces solutions hiéroglyphiques et cabalistisques de chiffres qui nous venaient des quatre coins de l'horizon. Cependant à l'exception de ceux qui écrivaient ces chiffres, nous ne croyons pas qu'on eût pu, parmi les lecteurs du journal, en trouver beaucoup qui y vissent autre chose qu'une hâblerie fieffée. Nous voulons dire que personne ne croyait réellement à l'authenticité des réponses. Les uns prétendaient que ces mystérieux logogriphes n'étaient là que pour donner au journal un air drôle, en vue d'attirer l'attention. Selon d'autres, il était plus probable que non seulement nous résolvions les chiffres, mais encore que nous composions nous-même les énigmes pour les résoudre. Comme les choses en étaient là, quand on jugea à propos d'en finir avec cette diablerie, l'auteur de cet article profita de l'occasion pour affirmer la sincérité du journal en question,—pour repousser les accusations de mystification dont il fut assailli,—et pour déclarer en son propre nom que les chiffres avaient tous été écrits de bonne foi, et résolus de même.

Voici un mode de correspondance secrète très ordinaire et assez simple. Une carte est percée à des intervalles irréguliers de trous oblongs, de la longueur des mots ordinaires de trois syllabes du type vulgaire. Une seconde carte est préparée identiquement semblable. Chaque correspondant a sa carte. Pour écrire une lettre, on place la carte percée qui sert de clef sur le papier, et les mots qui doivent former le vrai sens s'écrivent dans les espaces libres laissés par la carte.

Puis on enlève la carte, et l'on remplit les blancs de manière à obtenir un sens tout à fait différent du véritable. Le destinataire, une fois le chiffre reçu, n'a qu'à y appliquer sa propre carte, qui cache les mots superflus, et ne laisse paraître que ceux qui ont du sens. La principale objection à ce genre de cryptographie, c'est la difficulté de remplir les blancs de manière à ne pas donner à la pensée un tour peu naturel. De plus, les différences d'écriture qui existent entre les mots écrits dans les espaces laissés par la carte, et ceux que l'on écrit une fois la carte enlevée, ne peuvent manquer d'être découvertes par un observateur attentif.

On se sert quelquefois d'un paquet de cartes de cette façon: Les correspondants s'entendent, tout d'abord, sur un certain arrangement du paquet. Par exemple: on convient de faire suivre les couleurs dans un ordre naturel, les piques au dessus, les coeurs ensuite, puis les carreaux et les trèfles. Cet arrangement fait, on écrit sur la première carte la première lettre de son épître, sur la suivante, la seconde, et ainsi de suite, jusqu'à ce qu'on ait épuisé les cinquante-deux cartes. On mêle ensuite le paquet d'après un plan concerté à l'avance. Par exemple: on prend les cartes du talon et on les place dessus, puis une du dessus que l'on met au talon, et ainsi de suite, un nombre de fois déterminé. Cela fait, on écrit de nouveau cinquante-deux lettres, et l'on suit la même marche jusqu'à ce que la lettre soit écrite. Le correspondant, ce paquet reçu, n'a qu'à placer les cartes dans l'ordre convenu, et lire lettre par lettre les cinquante-deux premiers caractères. Puis il mêle les cartes de la manière susdite, pour déchiffrer la seconde série et ainsi de suite jusqu'à la fin. Ce que l'on peut objecter contre ce genre de cryptographie, c'est le caractère même de la missive. Un paquet de cartes ne peut manquer d'éveiller le soupçon, et c'est une question de savoir s'il ne vaudrait pas mieux empêcher les chiffres d'être considérés comme tels que de perdre son temps à essayer de les rendre indéchiffrables, une fois interceptés.