Le marquis Giovanni Poleni, le célèbre professeur d'astronomie et de mathématiques de Padoue, le restaurateur, pour ne pas dire le créateur de l'architecture hydraulique, Poleni, qui, grâce à sa connaissance de tous les secrets de la mécanique, eut la gloire de consolider la basilique de Saint-Pierre de Rome, sans rien changer à sa valeur artistique, et après que tous les architectes consultés par Benoît XIV eurent déclaré que le chef-d'œuvre du génie de Michel-Ange ne pouvait être consolidé qu'à la condition d'être réédifié sur des fondements nouveaux; Poleni, que les rois faisaient consulter pour tous leurs grands travaux; Poleni, le (Page ) correspondant aimé de Newton, de Leibnitz, de Bernouilli, de Wolf, de Mairan, de Cassini, de Manfredi, de S'Gravesande, de Muschenbroëck, etc., qui lui donnaient généralement le nom de maître, Poleni entreprit, lui aussi, de construire une machine à calculer.
Wolf, à qui il avait fait part de son projet, lui écrivit de Halle: «Je fais des vœux d'autant plus ardents pour votre succès, que votre échec détournerait éternellement tous les savants de rentrer dans une voie que vous n'auriez pu parcourir jusqu'au bout.»
Poleni suivit jusqu'au bout la voie dans laquelle il était entré, c'est-à-dire exécuta sa machine; mais les plans et la description qu'il nous en a laissés, dans ses Miscellanea, nous montrent qu'il ne fut pas plus heureux que ses devanciers.
Les craintes de Wolf ne se réalisèrent pas; l'insuccès de Poleni ne découragea personne, ainsi qu'on le verra par la suite de cette liste des chercheurs de l'introuvable machine.
Leupold, le grand ingénieur des mines du roi de Pologne, l'auteur de la précieuse collection intitulée Theatrum machinarum, l'inventeur heureux de tant d'instruments de mathématiques, ayant échoué dans ses premières tentatives pour créer une machine à calculer qui n'empruntât rien aux machines antérieures, finit par recourir au tambour de Petit. Il le rendit plus commode en le faisant décagonal, de cylindrique qu'il était, puisqu'il supprima par là les rainures pour le (Page ) glissement des baguettes; mais ce travail n'ajouta rien à sa gloire, et la machine à calculer restait toujours à trouver.
Sera-ce Clairaut, grand géomètre dès l'âge de douze ans, et membre de l'Académie des Sciences à dix-huit, qui fera la merveilleuse découverte?
Non. Il mettra dans cette recherche toute sa science, toute son ardeur, tout son génie; mais tous ses efforts seront impuissants et il brisera toutes les poulies, tous les rouages, tous les ressorts de sa machine, en disant: «Délivrons-nous de la présence de ces témoins, qui me rappelleraient sans cesse que j'ai travaillé pendant dix-huit mois à faire des arithméticiens de ces morceaux de bois et de cuivre.»
Il nous est cependant resté l'une des combinaisons qui s'étaient présentées à l'esprit de Clairaut, pendant qu'il travaillait à sa machine à calculer. Nous voulons parler de sa planchette trigonométrique, figurée et décrite dans le 5e volume des Machines de l'Académie des Sciences, et destinée à remplacer les tables des logarithmes et à résoudre les triangles sans calcul.
Michaël Poetius a décrit un instrument composé de cercles concentriques mobiles, qui semble n'être qu'une modification de la rabdologie de Néper et ne peut pas rendre plus de services que la table de Pythagore. Aussi l'appelle-t-on Mensula pythagorica.
La nouvelle disposition de la table de Pythagore par de Méan est décrite dans les Machines de l'Académie des Sciences et facilite plusieurs calculs; mais ce (Page ) n'est pas là, à proprement parler, une machine. Nous dirons la même chose de l'échelle à coulisse de Ch. Leadbetter, dont Jones s'attribua ou se laissa attribuer plus tard l'invention.