Ce retard tenait à bien des causes et n'avait pas été sans quelque profit pour la Science. On avait fait escale à la Martinique, à Saint-Domingue; on avait entrepris des recherches sur la réfraction, sur le pendule. C'est à Saint-Domingue que Bouguer imagina et fit réaliser le pendule invariable. On arriva à Quito le 13 juin 1736; mais à partir de ce moment des difficultés sans nombre surgirent, occasionnées par le climat inconstant du pays, son caractère montueux, l'impossibilité d'obtenir un concours efficace des autorités espagnoles et des indigènes et aussi, on doit le dire, par le défaut d'entente des observateurs. Chacun d'eux s'appliquait à garder le plus possible le secret de ses chiffres et à dissimuler dans ses opérations ce qui pouvait donner prise à la critique. Il fut fait, en réalité, deux triangulations distinctes et trois relations furent publiées, dues respectivement à Bouguer, à La Condamine et aux officiers espagnols. Nous devons à cette circonstance de connaître divers détails qu'un rapport fait en commun eût laissés dans l'ombre et qui sont utiles pour apprécier l'exactitude du résultat final. Cette critique a été faite d'une manière pénétrante par Delambre dans un travail demeuré longtemps inédit et que M. Bigourdan a eu le mérite de mettre en lumière [4].

[Note 4: ][ (retour) ] G. Bigourdan, Sur diverses mesures d'arc de méridien, faites dans la première moitié du XVIIIe siècle (Bulletin astronomique, t. XVIII, p. 320).

Bouguer et La Condamine s'étaient promis de ne point faire connaître au public les déterminations astronomiques exécutées en premier lieu, reconnues plus tard défectueuses, et qu'il avait été nécessaire de recommencer. Mais La Condamine, écrivain facile, causeur brillant et intarissable, était l'homme du monde le moins propre à tenir strictement un engagement de ce genre. Les trois académiciens, rentrés en France en 1744, 1745 et 1751, mirent le public au courant de leurs aventures et de leurs travaux. Bouguer publia en 1752 une Justification des Mémoires de l'Académie, pour se plaindre des indiscrétions de son collègue. Une vive polémique s'ouvrit et ne se termina que par la mort d'un des adversaires.

Ces querelles personnelles ont perdu de leur intérêt aujourd'hui, et ne doivent pas nous empêcher d'accorder, aux uns comme aux autres, le tribut d'éloges qui leur est dû. Les missionnaires du Pérou, pas plus que ceux de Laponie, n'ont dit le dernier mot sur la question ardue de la forme de la Terre. Ils ont, au prix d'efforts et de travaux méritoires, mis hors de doute la réalité de l'aplatissement. Pour la valeur du degré de latitude à l'équateur, Bouguer donne 56 736 toises, La Condamine 56 714 toises, les officiers espagnols trouvent 56 768 toises. Adoptons le premier résultat, qui tient le milieu entre les deux autres. Combiné avec le degré du Nord, il donne l'aplatissement 1/223, plus fort que celui de Newton. La correction aurait dû, nous ne pouvons en douter aujourd'hui, être faite en sens contraire. On arrive au chiffre plus vraisemblable 1/324 si l'on substitue aux données de Maupertuis celles d'une mission suédoise qui opéra sur le même terrain de 1801 à 1803 sous la direction de Svanberg. L'arc du Pérou fait aussi l'objet d'une revision qui s'exécute en ce moment par les soins du gouvernement français. Tant que les résultats n'en seront pas publiés, les travaux des académiciens du XVIIIe siècle resteront un élément essentiel dans notre connaissance des dimensions du globe terrestre. Il faut en dire autant d'un arc de méridien mesuré vers la même époque par Lacaille dans le voisinage du cap de Bonne-Espérance, repris au siècle suivant par Maclear et Airy, et que l'intervention du gouvernement anglais promet d'étendre bientôt à travers l'Afrique australe tout entière.

D'importantes recherches théoriques s'accomplissaient, vers la même époque, dans la voie ouverte par Newton. Mac Laurin, dans son Traité des fluxions, publié en 1742, résolut le problème de l'attraction d'un ellipsoïde homogène de révolution sur un point intérieur quelconque. Il démontra que l'ellipsoïde aplati est une figure d'équilibre pour une masse fluide homogène tournant autour du petit axe avec une vitesse convenable.

Les Mathematical dissertations de Thomas Simpson, parues en 1743, établissent l'existence d'une vitesse angulaire limite, au delà de laquelle l'équilibre relatif est impossible. Elles montrent que deux ellipsoïdes différents peuvent répondre à une même vitesse angulaire.

Tant que les recherches mathématiques n'avaient pour objet que des corps homogènes, on pouvait douter qu'elles fussent susceptibles d'une application utile aux planètes. Clairaut fut le premier à s'engager avec succès dans la voie difficile de l'attraction d'un ellipsoïde hétérogène. Sa Théorie de la figure de la Terre (1743), où se déploie un talent analytique de premier ordre, demeure sur bien des points un modèle qui n'a guère été dépassé. Clairaut suppose que les surfaces d'égale densité sont, aussi bien que la surface extérieure, des ellipsoïdes de révolution autour d'un même axe, mais il laisse arbitraire la loi de variation de densité, aussi bien que la loi de variation d'ellipticité d'une couche à l'autre. Il admet seulement (ce qui est d'ailleurs fort vraisemblable) que, d'une couche à l'autre, la densité augmente toujours quand on se rapproche du centre.

Partant de ces hypothèses, Clairaut démontre tout une série de lois remarquables. Appelons: