Sur la Lune l'eau fait défaut actuellement et elle n'a pas laissé de traces d'une intervention active dans le passé. La nappe océanique et la couverture sédimentaire sont absentes. Il suit de là que la Lune est particulièrement propre à nous apprendre comment la solidification s'est accomplie et comment s'est effectué le passage de la première période à la seconde.

Plus petit, notre satellite a évolué plus vite: mais depuis longtemps déjà la permanence y règne à un tel degré que les traits les mieux visibles de la surface lunaire peuvent être comparables, par leur âge, aux plus anciens accidents du sol terrestre. La dernière période de destruction traversée a été celle de la formation des cirques. Ses ravages n'ont pas été tels que l'état immédiatement antérieur ne puisse être reconstitué avec une probabilité très élevée.

Il y a eu, dans notre opinion, une époque où tous les accidents de la surface de la Lune se partageaient entre deux types: le type arctique, plaines quadrangulaires encadrées de cordons saillants (fig. 46), le type équatorial formé de losanges assemblés, sans dépression notable du centre des cases. Il est facile d'imaginer la transition de l'un à l'autre, en supposant que les cordons perdent graduellement leur relief et se transforment en sillons irréguliers. Le problème consiste maintenant à expliquer comment l'une ou l'autre de ces formes a pu dériver de l'état initial le plus vraisemblable, par le jeu régulier des lois physiques.

Les planètes et leurs satellites ont commencé par être fluides dans toute leur masse. Leur forme sphérique le démontre et jamais, croyons-nous, une contestation sérieuse ne s'est élevée sur ce point. Tant que cet état persiste, la surface de la planète, constamment renouvelée, dissipe dans l'espace une quantité de chaleur bien supérieure à celle qui est reçue du Soleil. C'est à la surface que se produit le refroidissement le plus actif et que les scories doivent se former tout d'abord.

Que deviennent les îlots ainsi constitués? Ici, la divergence des théories se manifeste. Les uns (Lord Kelvin, MM. King et Barus, etc.) veulent que les particules solidifiées plongent à l'intérieur, où elles reprennent bientôt l'état liquide sous l'influence d'une température plus haute. Ainsi s'effectue un brassage prolongé qui tend à établir dans toute la masse une température à peu près uniforme à un moment donné, mais décroissante avec le temps. Pour nombre de substances, la compression favorise le passage à l'état solide. C'est donc au centre, où les pressions sont plus fortes, que la solidification commence, pour se propager ensuite vers la surface. Dans ce système, la Lune est totalement solidifiée; la Terre l'est aussi, sauf des poches de lave relativement insignifiantes, qui donnent lieu aux éruptions volcaniques.

La thèse opposée, plus en faveur près des géologues (Suess, de Lapparent, Sacco, etc.), admet que, dans l'état de fluidité, les matériaux se sont disposés par ordre de densité croissante, en allant de la surface au centre. Les substances peu denses sont ainsi les plus exposées au refroidissement. Plusieurs d'entre elles, à l'exemple de l'eau, se dilatent par la solidification. Elles vont donc former une croûte solide graduellement épaissie. Le retour à l'état liquide sera pour elles une rare exception, bien que la partie fluide doive prédominer longtemps encore par sa masse. La conductibilité des roches pour la chaleur est, en effet, si faible que la solidification totale d'une planète, par l'extérieur, semble devoir réclamer autant ou plus de temps que l'extinction du Soleil.

Nous avons indiqué, au Chapitre VII de ce Livre, diverses raisons qui tendent à faire limiter à un petit nombre de myriamètres l'épaisseur de la croûte terrestre, c'est-à-dire de la couche où la rigidité des matériaux s'oppose aux courants de convection. La Lune fournit à l'appui de la même thèse des arguments d'un autre ordre, mais qui sont bien loin d'être négligeables.

Les traits anciens du relief lunaire rentrent dans un plan mieux défini et plus régulier que celui des chaînes de montagnes terrestres. Nous y trouvons comme élément essentiel des fractures disposées en séries parallèles, avec de faibles dénivellations. L'intervalle de deux fractures consécutives n'est jamais qu'une petite fraction du rayon lunaire. Là où cette structure s'efface, on voit sans peine que sa disparition est due à des éruptions volcaniques ou à d'abondants épanchements liquides qui ont nivelé la surface.

Cette figure est précisément celle que nous devons nous attendre à rencontrer dans l'hypothèse d'une écorce mince et non malléable. Quand la variation des forces extérieures tend à imposer à la masse fluide une nouvelle figure d'équilibre, satisfaction est donnée à cette tendance par la formation de crevasses successives rendant possible la flexion de l'écorce, ainsi qu'on peut l'observer sur les glaciers. Si la flexion ainsi réalisée n'est pas suffisante, le liquide intérieur comprimé déborde par les crevasses et les oblitère. L'intervalle d'une fissure à l'autre sera du même ordre que l'épaisseur de la croûte et variera dans le même sens. Entre les deux lèvres d'une même fissure, la différence de niveau sera toujours moindre que l'épaisseur de la croûte, car elle ne saurait lui devenir égale sans que le fragment inférieur ne soit inondé. Ce n'est plus alors un sillon que l'on observe, mais une terrasse, comme celles dont le Mur Droit nous offre l'exemple le plus net.

Avec le temps, les nappes épanchées se figent, l'épaisseur de la croûte augmente, les ruptures deviennent plus rares et plus espacées, mais aussi peuvent donner lieu à des inégalités plus fortes. Enfin, l'écorce devient tellement résistante qu'elle ne cède plus qu'accidentellement sur des points faibles, où se forment des cheminées volcaniques. Il semble aujourd'hui que l'ère des conflits soit close. Nous ne voyons plus sur la Lune aucune nappe liquide qui trahisse un épanchement récent, ni même aucun espace un peu notable qui n'ait reçu et gardé des dépôts éruptifs.