Les choses se passeront tout autrement dans la théorie de Lord Kelvin, qui fait croître le noyau solide à partir du centre. Cet accroissement s'effectue grain par grain, avec lenteur et régularité, comme celui dont les couches stratifiées de l'écorce terrestre sont le résultat. Toute la masse acquiert une température presque uniforme, voisine du point de solidification. Tant que la nappe liquide est assez abondante pour couvrir toute la surface, elle se dispose à chaque instant suivant les exigences de l'isostase. On n'aperçoit aucun motif pour que la figure du noyau s'écarte d'une surface de niveau répondant à la valeur moyenne de la pesanteur, c'est-à-dire d'un sphéroïde très uni.
A la vérité, la nappe liquide, diminuant toujours, laissera émerger des portions d'abord très petites, puis de plus en plus grandes de ce noyau solide. Mais quelle cause invoquera-t-on pour faire naître, soit sur les îlots, soit sur les continents, un relief brusque et accidenté? Ce ne sera point la réaction du liquide intérieur, que la théorie a justement pour objet de supprimer. Ce ne sera pas davantage l'érosion, puisque les bassins lunaires n'ont nulle part le caractère de vallées ouvertes. La contraction par refroidissement, déjà trouvée à peine suffisante dans la première théorie pour expliquer le relief terrestre, nous échappe ici, puisque la période antérieure a eu pour effet nécessaire d'amener le globe entier à une température uniforme et médiocrement élevée, celle de la solidification des minéraux.
Reste, pour expliquer le relief lunaire, l'action des forces extérieures émanant du Soleil ou de la Terre. Il est clair que ces forces, agissant sur toutes les particules du globe solide, varient d'une manière lente et continue. Si la limite de résistance est dépassée, la déformation s'accomplira par voie de fissures et de glissements intéressant toute la masse du globe et non pas seulement des écailles superficielles. Nous n'avons aucune chance de voir apparaître une agglomération dense de montagnes abruptes et de vallées profondes.
Enfin, si l'on admet que la solidification porte en dernier lieu sur une mince couche superficielle, on ne voit pas à quel réservoir s'alimenteront les nombreuses et abondantes éruptions volcaniques dont la Lune a été le théâtre. On ne s'explique pas la présence de ces nappes unies qui couvrent le fond des mers et des cirques et qui attestent des solidifications lentement opérées, à des niveaux qui diffèrent de plusieurs milliers de mètres.
Que l'on envisage, au contraire, la réaction d'une grande masse fluide sur une écorce relativement mince et hétérogène, la température peut monter vers le centre à des chiffres très élevés, la contraction par refroidissement reprend le rôle principal dans l'établissement du relief, les inégalités locales de la croûte n'ont plus d'autre limite que son épaisseur, l'alimentation ultérieure des volcans est largement assurée; l'élément périodique que les marées introduisent dans la déformation fait apparaître comme probable la prédominance de deux directions principales dans l'alignement des cassures.
Divergence dans les modes d'évolution respectifs de la Terre et de la Lune. Conclusion.--Tout ce qui précède nous conduit à regarder la surface solide comme formée au début par la jonction de bancs assez minces de scories flottantes. On ne voit pas qu'une différence notable doive être établie à cet égard entre les deux planètes.
Cette croûte mince, fragile, peu cohérente, subira des vicissitudes plus fortes sur la Lune, en raison de l'ampleur des marées que l'attraction de la Terre y provoque. Le fluide interne, encore peu comprimé et presque toujours libre de ses mouvements, s'enflera périodiquement. Deux séries de cassures apparaîtront, les unes parallèles au front de l'onde de marée, les autres suivant la direction des courants principaux que ces marées déterminent.
Sous cette double sollicitation, l'écorce se partage en cases quadrangulaires, dont les frontières forment des cicatrices alternativement ouvertes et refermées. Le tracé de ces frontières est ample, voisin d'un grand cercle, comme celui des ondes de marée quand elles trouvent peu de résistance. La croûte solide gagne en épaisseur par l'action du refroidissement et surtout par la solidification des nappes épanchées. Elle exerce une pression croissante sur le fluide intérieur, l'amène à l'état visqueux et rend ses déplacements plus difficiles. En même temps les marées tendent à s'éteindre, à mesure que l'égalité s'établit entre les durées de rotation et de révolution de la Lune. La période de formation des crevasses apparaît donc comme limitée. Il semble, en fait, qu'elle était déjà sur son déclin quand la période volcanique s'est ouverte. Très peu de cirques se montrent partagés en deux par une fissure. Très peu de sillons anciens, dépendant d'un système rhombique, ont échappé à une destruction partielle par les dépôts éruptifs. Les seules crevasses restées nettes et fraîches sont celles qui sont tracées en plaine à travers des épanchements récents. Elles semblent toutefois révéler les mouvements tardifs des compartiments submergés, dont elles reproduisent les orientations.
La Terre a traversé, cela n'est guère douteux, une transformation analogue, moins active en raison de l'ampleur moindre des marées, plus prolongée en raison de la marche lente du refroidissement. Le sectionnement de l'écorce a dû suivre, quelque temps au moins, la même marche, mais les cases primitives ont été plus effacées sur la Terre, à la suite de la formation des nappes océaniques et sédimentaires, qu'elles ne l'ont été sur la Lune par les éruptions volcaniques. La prédominance de deux directions principales a cependant laissé sur notre globe des traces nombreuses, par exemple le contour anguleux des plateaux archéens, la terminaison des continents en pointe vers le Sud, le parallélisme des rivages de l'Atlantique, la similitude de l'Amérique du Sud et de l'Afrique, les coudes brusques des grandes vallées et des lignes de faîte en pays de montagnes, la succession des failles en séries parallèles. Il y a là des indices concordants d'une structure indépendante des dépôts stratifiés, antérieure à leur formation, établie sur un plan plus géométrique et plus large.
Le sectionnement de l'écorce en cases n'a été que le point de départ d'une nouvelle série de déformations. La première écorce cohérente correspond à une figure d'équilibre relatif actuelle. Cette figure se modifie, avec le temps, sous l'influence de causes diverses: changement dans la position des pôles, variation de la vitesse angulaire et, par suite, du régime des marées, contraction du globe entier par refroidissement.