2o N'admettre aucun des termes un peu obscurs ou équivoques, sans définition.
3o N'employer dans les définitions que des termes parfaitement connus ou déjà expliqués.
4o N'omettre aucun des principes nécessaires, sans avoir demandé si on l'accorde, quelque clair et évident qu'il puisse être.
5o Ne demander en axiomes que des choses parfaitement évidentes d'elles-mêmes.
6o N'entreprendre de démontrer aucune des choses qui sont tellement évidentes d'elles-mêmes, qu'on n'ait rien de plus clair pour les prouver.
7o Prouver toutes les propositions un peu obscures, en n'employant à leur preuve que des axiomes très évidents d'eux-mêmes ou des propositions déjà démontrées ou accordées.
8o N'abuser jamais de l'équivoque des termes, en manquant de substituer mentalement les définitions qui les restreignent et les expliquent.
Pascal.
Lorsque l'on aura à trouver la démonstration d'une proposition énoncée, on cherchera d'abord si elle peut se déduire comme une conséquence nécessaire de propositions admises, auquel cas, elle devra être admise elle-même, et sera par conséquent démontrée. Si l'on n'aperçoit pas de quelles propositions connues elle pourrait être déduite, on cherchera de quelle proposition non admise elle pourra l'être, et alors la question sera ramenée à démontrer la vérité de cette dernière. Si celle-ci peut se déduire de propositions admises, elle sera reconnue vraie, et par suite la proposée; sinon, on cherchera de quelle proposition non encore admise elle pourrait être déduite, et la question serait ramenée à démontrer la vérité de cette dernière. On continuera ainsi jusqu'à ce que l'on parvienne à une proposition reconnue vraie: et alors la vérité de la proposée sera démontrée.