Gdyby dało się wykazać, że polon jest pierwiastkiem nowym, nie zmniejszyłoby się przez to prawdziwości tego faktu, że pierwiastek ten nie może trwać bezgranicznie długo w stanie silnej radioaktywności, przynajmniej wtedy, gdy zostanie wydzielony z minerału. Można tedy zapatrywać się na tę kwestię w sposób dwojaki: 1) albo cała radioaktywność polonu jest własnością wzbudzoną przez sąsiedztwo substancji promieniotwórczych innych; polon posiadałby wtedy zdolność aktywowania się atomowego w sposób trwały, zdolność, która nie zdaje się być udziałem żadnego ciała innego; 2) albo radioaktywność polonu jest własnością swoistą, która znika samodzielnie w jednych warunkach, a która może trwać w pewnych innych warunkach, jakie są urzeczywistnione w minerale pierwotnym. Zjawisko aktywowania atomowego przez zetknięcie jest jeszcze tak mało znane, że brakuje podstaw, aby można było utworzyć sobie jakiś pogląd ustalony na tę sprawę.

Niedawno ukazał się komunikat p. Marckwalda dotyczący polonu36. Marckwald zanurza sztabkę bizmutu czystego w roztworze otrzymanym przez rozpuszczenie w kwasie solnym bizmutu wyciągniętego z odpadków po przerobie blendy smolistej. Po upływie pewnego przeciągu czasu sztabka pokrywa się osadem bardzo czynnym, a roztwór zawiera wtedy tylko bizmut nieczynny. Marckwald otrzymuje również osad bardzo czynny, dodając chlorku cynawego do roztworu bizmutu radioaktywnego w kwasie solnym. Marckwald wnioskuje stąd, że pierwiastek promieniotwórczy jest analogiczny z tellurem i nadaje mu nazwę radiotelluru. Materia czynna Marckwalda wydaje się identyczną z polonem zarówno ze względu na swe pochodzenie, jak i na promienie ulegające silnemu pochłanianiu które są przez nią wysyłane. Wybór nowej nazwy dla tej materii w obecnym stanie kwestii jest bez wątpienia rzeczą zupełnie bezużyteczną.

Przygotowanie czystego chlorku radu. Sposób, jaki obrałam w celu wyciągnięcia czystego chlorku radu z chlorku baru radioaktywnego, polega na tym, że mieszaninę chlorków poddaje się krystalizacji cząstkowej, najpierw z wody czystej, następnie z wody zakwaszonej czystym kwasem solnym. Tak więc zużytkowuje się różnicę rozpuszczalności dwu chlorków, z których chlorek baru jest bardziej rozpuszczalny od chlorku radu.

W początkach krystalizacji cząstkowej stosuje się czystą wodę destylowaną. Rozpuszcza się chlorek, doprowadza roztwór do stanu nasycenia w temperaturze wrzenia, po czym przez oziębianie uskutecznia się krystalizowanie soli w parownicy przykrytej. Wtedy tworzą się na dnie piękne kryształy przylegające, sponad których łatwo zlać można ług pokrystaliczny. Jeżeli wyparujemy do suchości próbkę tego ługu, znajdziemy, że otrzymany chlorek jest około pięć razy mniej radioaktywny niż sól, która się wykrystalizowała. Zatem chlorek pierwotny został rozdzielony na dwie porcje: A i B. Względem każdego z obu chlorków, A i B, stosuje się ponownie ten sam sposób postępowania i z każdego z nich otrzymuje dwie nowe porcje. Gdy krystalizacja jest ukończona, łączy się razem mniej aktywną frakcję chlorku A z bardziej aktywną chlorku B, gdyż obie posiadają mniej więcej ten sam stopień radioaktywności. Teraz jesteśmy więc w posiadaniu trzech porcji , które w dalszym ciągu traktuje się w ten sam sposób.

Liczbie porcji nie pozwala się jednak rosnąć bez końca, bowiem w miarę jej powiększania zmniejsza się aktywność porcji najłatwiej rozpuszczalnej. Gdy porcja ta wykazuje wreszcie nieznaczną tylko aktywność, wyłącza się ją z krystalizacji cząstkowej. Po otrzymaniu pożądanej liczby porcji zaprzestaje się również frakcjonowania porcji najtrudniej rozpuszczalnej (najbogatszej w rad) i wyłącza się ją z roboty.

Pracuje się z pewną stałą liczbą porcji . Po każdej serii czynności roztwór nasycony (ług pokrystaliczny) pozostający z porcji jednej, wylewa się na kryształy z porcji następującej; skoro jednak po przerobieniu jednej serii wyłączyliśmy frakcję najłatwiej rozpuszczalną, wtedy, po przerobieniu znów serii następnej, tworzymy natomiast nową porcję z frakcji najłatwiej rozpuszczalnej, a wyłączamy za to kryształy, które przedstawiają część najbardziej aktywną. Zachowując w kolejnym następstwie te dwa sposoby postępowania, otrzymujemy bardzo regularny mechanizm frakcjonowania, w którym liczba frakcji i aktywność każdej z nich pozostają stałe, przy czym każda frakcja dana jest około pięć razy aktywniejsza niż następne. W szeregu tym z jednej strony (w końcu szeregu) wyłącza się produkt prawie nieczynny, gdy z drugiej strony (na przodzie) zdobywa się chlorek wzbogacony w rad. Ilość substancji w poszczególnych frakcjach zmniejsza się naturalnie coraz bardziej i tym mniej zawierają one substancji, im większą staje się ich aktywność.

Z początku operowano z sześciu frakcjami, a aktywność chlorku wyłączonego na końcu szeregu wynosiła nie więcej nad 0,1 aktywności uranu.

Gdy w ten sposób znaczna część substancji nieczynnej zostanie wyłączona, a frakcje staną się drobne, nie przedstawiałoby żadnej korzyści dalsze wydzielanie wobec aktywności tak słabej; wtedy usuwa się jedną frakcję z końca szeregu, a na początek włącza się porcję utworzoną z poprzednio osiągniętego chlorku aktywnego. Zdobywa się więc teraz chlorek bogatszy w rad niż poprzednio. System ten stosuje się aż do chwili, gdy kryształy z początku szeregu będą przedstawiały czysty chlorek radu. Jeżeli frakcjonowanie odbywało się w sposób ścisły, wtedy pozostają tylko bardzo drobne ilości wszelkich produktów pośrednich.

Skoro krystalizacja cząstkowa już znacznie jest posunięta i gdy ilość substancji w poszczególnych frakcjach stała się nieznaczną, wtedy dalszy podział przez krystalizację nie jest już tak skuteczny, gdyż oziębianie następuje zbyt raptownie, a objętość roztworu, który ma być odlany, staje się zbyt mała. Wtedy należy dolać do wody pewną określoną ilość kwasu solnego; ilość ta winna podwyższać się w miarę dalszego posuwania się krystalizacji cząstkowej.

Korzyść wynikła z dodatku kwasu solnego polega na możności powiększenia objętości roztworu, gdyż rozpuszczalność chlorków w wodzie zaprawionej kwasem solnym jest mniejsza niż w wodzie czystej. Nadto frakcjonowanie jest wtedy bardzo skuteczne: różnica dwu porcji otrzymanych z tego samego produktu staje się znaczna. Stosując wodę z wielką ilością kwasu, osiąga się możność doskonałego oddzielania i wtedy można ograniczyć się do trzech lub czterech frakcji . Korzystność tego sposobu ujawnia się, skoro tylko ilość substancji stanie się dostatecznie małą, by można było posługiwać się nim bez przeszkód. Kryształy wydzielające się z roztworu kwaśnego mają postać silnie wydłużonych igieł, których wygląd jest zupełnie ten sam, czy to będzie chlorek baru czy radu. Jedne i drugie łamią światło podwójnie. Kryształy chlorku baru radonośnego wydzielają się w stanie bezbarwnym, skoro jednak zawartość w nich radu stanie się dostatecznie wielka, przyjmują po upływie kilku godzin barwę żółtawą, przechodzącą w odcień pomarańczowy, a niekiedy przyjmują zabarwienie różowe. Zabarwienie to znika w roztworze. Kryształy chlorku radu czystego nie zabarwiają się wcale lub przynajmniej nie tak prędko; barwa zdaje się zatem być spowodowana przez równoczesną obecność baru i radu w krysztale. Maksimum zabarwienia otrzymuje się dla pewnego stopnia stężenia pod względem zawartości radu; własność ta może przeto być pomocna w orientowaniu się w postępie frakcjonowania. Dopóki frakcja najbardziej aktywna barwi się, zawiera ona jeszcze znaczną ilość baru, gdy jednak nie przyjmuje żadnego zabarwienia, a natomiast czynią to frakcje następujące, wtedy składa się głównie z czystego chlorku radu.