Spostrzegałam niekiedy tworzenie się pokładu kryształów, w którym część jedna pozostawała bezbarwna, gdy druga barwiła się. Zdawało się możliwą rzeczą oddzielić kryształy bezbarwne mechanicznie, jednak nie próbowałam tego. — W końcu krystalizacji cząstkowej stosunek aktywności w porcjach po sobie następujących nie jest taki sam, ani też tak prawidłowy, jak na początku; mimo to nie nastręcza się stąd żadna poważniejsza przeszkoda w biegu pracy.
Strącanie cząstkowe chlorku baru radonośnego w roztworze wodnym za pomocą alkoholu prowadzi również do wydzielenia chlorku radu, który strąca się najpierw. Sposób ten, którego używałam z początku, zastąpiłam później metodą opisaną powyżej, bardziej systematyczną. Niemniej jednak posługiwałam się strącaniem za pomocą alkoholu, aby oczyścić chlorek radu od małej domieszki chlorku baru. Ostatni związek jest rozpuszczalny w alkoholu zaprawionym nieco wodą i może być w ten sposób usunięty.
P. Giesel, który od czasu ogłoszenia naszych pierwszych poszukiwań zajął się przygotowaniem ciał radioaktywnych, zaleca uskuteczniać oddzielanie baru od radu przez cząstkowe krystalizowanie w wodzie mieszaniny bromków. Stwierdziłam, że sposób ten jest istotnie korzystny, zwłaszcza w początkach frakcjonowania.
Niezależnie od tego, jakiego sposobu frakcjonowania używać będziemy, jest zawsze rzeczą pożyteczną poddawać go kontroli przez mierzenie aktywności. Należy przy tym zauważyć, że każdy związek radu, który ze stanu roztworu został przeprowadzony w stan stały, posiada w początkach tym mniejszą aktywność, im dłużej pozostawał w roztworze. Aktywność rośnie potem w przeciągu kilku miesięcy aż do pewnej granicy, zawsze jednakowej. Aktywność końcowa jest pięć lub sześć razy większa niż początkowa. Zmiany te, do których powrócę jeszcze nieco później, winny być wzięte pod uwagę podczas pomiarów aktywności. Aczkolwiek aktywność końcowa jest dokładniej scharakteryzowana, praktyczniej jest jednak w trakcie postępowania chemicznego mierzyć aktywność początkową produktu stałego. Aktywność substancji silnie promieniotwórczych różni się stopniem wielkości znacznie od aktywności minerałów macierzystych (jest ona
razy większa). Gdy się mierzy tę radioaktywność za pomocą metody wyłuszczonej na początku rozprawy niniejszej (przyrząd na rys. 1), nie można zwiększyć, poza pewną granicę, ciężaru kładzionego na talerzyk przytwierdzony do kwarcu. Ciężar ten wynosił w naszych doświadczeniach najwyżej 4000 g, odpowiadając pewnej wytworzonej ilości elektryczności, równej 25 jednostkom elektrostatycznym. Możemy więc mierzyć aktywność w granicach od 1 do 4000, stosując zawsze jedną i tę samą powierzchnię substancji czynnej. Aby granicę pomiarów rozszerzyć, zmieniamy tę powierzchnię w pewnym znanym stosunku. Substancja zajmie wtedy pośrodku talerza B pewną powierzchnię kolistą o znanym promieniu. Ponieważ w tych warunkach aktywność nie pozostaje ściśle proporcjonalna do powierzchni, przeto oznacza się empirycznie współczynniki, które pozwalają na porównywanie aktywności wobec nierównych powierzchni działających. Gdy znowu i ten środek okaże się niewystarczający, pozostaje uciec się do ekranów absorpcyjnych i innych sposobów odpowiednich, nad któremi nie będę się jednak tutaj dłużej zatrzymywała. Wszystkie te, bardziej lub mniej niedoskonałe środki wystarczają jednakże do nadawania kierunku poszukiwaniom.
Mierzyliśmy również prąd w kondensatorze włączonym w obwód baterii złożonej z małych akumulatorów z czułym galwanometrem. Potrzeba częstego sprawdzania czułości galwanometru kazała nam jednak zaniechać tej metody dla zwykłych pomiarów.
Oznaczenie ciężaru atomowego radu37. W biegu mych poszukiwań, częstokroć oznaczałam ciężar atomowy metalu zawartego w próbkach chlorku baru radonośnego. Za każdym razem, gdy po ukończeniu nowego przerobu, posiadłam nowy zapas tego materiału, posuwałam stężenie do granic możliwie najdalszych, tak że otrzymywałam 0,1 do 0,5 g substancji, która zawierała prawie całą radioaktywność mieszaniny pierwotnej. Z tej małej ilości substancji strącałam alkoholem lub kwasem solnym kilka miligramów chlorku, które zostawały przeznaczone do analizy widmowej. Posługując się swoją znakomitą metodą, Demarçay nie potrzebował więcej nad tę minimalną ilość substancji, aby otrzymać fotografię widma iskry. Produktu zbywającego używałam do oznaczania ciężaru atomowego.
Zastosowałam tutaj metodę klasyczną, która polega na tym, że chlor, zawarty w znanej ilości chlorku bezwodnego, oznacza się jako chlorek srebra. Dla sprawdzenia tego doświadczenia, oznaczałam ciężar atomowy baru za pomocą tej samej metody, stosując ją w tych samych warunkach i do tej samej ilości substancji: najpierw 0,5 g, a następnie tylko 0,1 g. Wartości stąd otrzymane chwiały się zawsze w granicach od 137 do 138. Przekonałam się przeto, że metoda ta daje wyniki zadowalające, nawet dla tak małej ilości substancji.
Dwa pierwsze oznaczenia wykonano na chlorkach, z których jeden był 230 razy, drugi zaś 600 razy aktywniejszy od uranu. Te dwa oznaczenia dały wartości te same, co i oznaczenia chlorku baru czystego. Można się było przeto spodziewać, że pewna różnica da się dopiero wykazać po użyciu produktu daleko bardziej aktywnego. Do doświadczenia następnego użyto tedy chlorku, którego aktywność była około 3500 razy większa od aktywności uranu; doświadczenie to pozwoliło po raz pierwszy osiągnąć różnicę, drobną wprawdzie, lecz pewną. Jako wartość średnią dla ciężaru atomowego metalu, zawartego w tym chlorku, otrzymałam liczbę 140, co świadczyło, że ciężar atomowy radu musi być wyższy od ciężaru baru. Stosując dalej produkty coraz to bardziej aktywne i dające widmo radu o coraz to większym natężeniu, stwierdziłam, że wartości otrzymane stają się również coraz większe, jak to można zauważyć w poniższej tabliczce (A oznacza wielkość aktywności chlorku, jeżeli aktywność uranu przyjmiemy za jednostkę; M — znaleziony ciężar atomowy).