Задачи на пропорціональное дѣленіе рѣшались, обыкновенно, тройнымъ правиломъ, при этомъ не оставалось мѣста ни сокращеніямъ, ни упрощеніямъ и не давалось простора личной сообразительности ученика. Обыкновенно, сперва помѣщалось условіе вопроса, потомъ тутъ же рѣшеніе, ученикъ все это заучивалъ и впослѣдствіи старался это прилагать, когда встрѣчалъ вопросъ, похожій на заученный.
Правило процентовъ.
Взиманіе процентовъ практиковалось еще въ древнія времена, но въ различныхъ государствахъ къ нему относились различно и вообще это дѣло было совершенно не урегулировано.
У римлянъ допускались только простые проценты, онн высчитывались по одному въ мѣсяцъ и выплачивались по истеченіи каждаго мѣсяца. Брать сложные проценты было у нихъ запрещено закономъ. Также и въ средніе вѣка во многихъ государствахъ сложные проценты запрещались закономъ, и тѣ, кто ихъ бралъ, считались ростовщиками и пользовались презрѣніемъ. Это были, обыкновенно, евреи. Законодатель исходилъ изъ того положенія, что если человѣкъ затрудняется простыми процентами и не можетъ вносить ихъ аккуратно въ срокъ, то безжалостно было-бы начислять на него сложные проценты. Въ ариѳметическихъ сборникахъ такія задачи попадались рѣдко, и въ условіяхъ ихъ говорилось, обыкновенно, про евреевъ. Въ русскомъ обществѣ до 18 ст. начисленіе процентовъ, очевидно, тоже не пользовалось расположеніемъ, по крайней мѣрѣ, у Магницкаго (1703 г.) очень мало задачъ на вычисленіе роста, и самое слово «процентъ» у него не употребляется.
Въ ХV—XVI стол., когда въ Западной Европѣ замѣчается особенный подъемъ торговли, всякія коммерческія вычисленія стали пользоваться вниманіемъ и среди нихъ вычисленіе сложныхъ процентовъ, но математикамъ того времени стоило большого труда рѣшать эти вопросы: не было десятичныхъ дробей и логариѳмовъ, да кромѣ того, мѣры стоимости были во всякомъ государствѣ свои, и переводить ихъ изъ одной системы въ другую считалось нелегкой операціей. Итальянскій математикъ Тарталья даетъ 4 способа вычисленія сложныхъ процентовъ: 1) опредѣляетъ наращенный капиталъ въ концѣ перваго года, затѣмъ въ концѣ второго и т. д., отвѣтъ находится при помощи тройного правила. 2) Пользуясь извѣстной алгебраической формулой aq n, но ея буквально не приводитъ. 3) Приростъ капитала выражаютъ его долей
(алгебраически
) и находятъ эту долю сперва отъ начальнаго капитала, потомъ отъ перваго наращеннаго, затѣмъ отъ второго наращеннаго и т. д.; эту долю прибавляютъ, когда нужно, къ первому капиталу, ко второму и т. д. 4) Берется произвольная сумма, обыкновенно сто рублей, и для нея находится отвѣтъ, т. е. капиталъ вмѣстѣ съ процентными деньгами, потомъ конечный отвѣтъ помножаютъ на то число, которое показываетъ, сколько сотенъ въ данномъ первоначальномъ капиталѣ. На этомъ способѣ основано и нынѣшнее пользованіе таблицами сложныхъ процентовъ.
Чтобы избѣжать трудныхъ дробей, нѣмецкій математикъ Рудольфъ (ХVІ в.) еще до введенія десятичныхъ дробей пользовался десятичными дробями. Его примѣръ такой: во что обратится сумма 375 флориновъ черезъ 10 лѣтъ по 5%? Рѣшеніе: