Это говорит г. Гельмгольц, один из величайших -- это я знаю -- натуралистов и -- читал я, охотно верю, сам по этой его статье отчасти вижу -- один из самых лучших математиков нашего времени.

Все в этой статье я совершенно ясно понимаю.

И я говорю: он,-- он, автор -- он не понимает, о чем он говорит в ней и что он говорит в ней. Он перепутывает математические термины и в путанице их запутывает свои мысли так, что у него в голове сформировалась совершенно бессмысленная чепуха, которую он и излагает в этой статье.

Я буду поправлять его ошибки в употреблении терминов, и техническая часть его статьи получит при этих поправках правильный смысл. Без них в ней сплошная бессмыслица.

Заметим одно словечко в тех первых строках статьи. Гельмгольц хочет обсудить философское значение предмета статьи. "Философское".-- А в "философии" он ничего не смыслит. В этом-то и причина падения его в бессмыслицу.

Он вычитал где-то что-то такое, чего не понял. Мы увидим, где и что он вычитал. Но это увидим мы. Сам он этого не знает. Углубляясь в те непонятные для него мысли, он вообразил, будто бы "возможно создать аналитическим путем новые системы геометрии" различные от геометрии "Эвклида".

Это -- дикая фантазия невежды, не понимающего, что он думает и о чем он думает.

Дело, в сущности, так просто, что вполне понятно во всех своих технических подробностях даже мне, при всей скудости моих математических знаний. Оно состоит вот в чем:

У каждой геометрической кривой есть свои особенности. Эллипс имеет не те качества, как гипербола, или циклоида, или синусоида. Кому это неизвестно? -- Я очень плохо знаю эллипс; гиперболу -- и того меньше; но и я понимаю: это разные линии. А когда они различны, то и уравнение эллипса -- понятно мне -- различно от уравнения гиперболы. Я не знаю ни той, ни другой из этих формул. Но они различны, это понятно мне. Синусоиду я почти вовсе не знаю; но знаю: у нее есть свое особое уравнение. Что такое циклоида, я тоже почти вовсе не знаю. Но знаю: и у нее есть свое особое уравнение.

Итак? -- Не все, что применимо к эллипсу, применяется к тем трем линиям. То же и о каждой из них. То же и о всякой другой геометрической линии.