Найти число, которое представлялось бы суммою двух квадратов столькими способами, сколько это желательно.
Пусть предложено 10 способами. Удвоенное его 20, берем все простые множители, получим 2, 2, 5. Вычитаем из каждого по единице, получим 1, 1, 4. Значит, нужно взять три простых числа, каждое из которых превосходит на единицу некоторое кратное четырех, например числа 5, 13, 17; взяв квадрато-квадрат одного из них (из-за показателя 4), умножим на остальные два и получим, таким образом, искомое число.
На основании этого легко найти наименьшее число, которое представимо суммой двух квадратов столько раз, сколько это желательно.
С другой стороны, вот метод, чтобы узнать, сколькими способами заданное число может быть составлено из двух квадратов.
Пусть дано число 325. Его простыми делителями, которые превосходят на единицу кратное четырех, будут 5, 13, последнее — один раз, а первое — в квадрате. Возьмем показатели 2, 1. Сложим их произведение и сумму, это дает 5, прибавим единицу, что дает 6, берем половину 3. Значит, столькими способами данное число составляется из двух квадратов.
Если получатся три показателя, например 2, 2, 1, то процедура будет такова. Произведение двух первых, сложенное с их суммой, даст 8. Умножаем на третий и прибавляем сумму сомножителей, что дает 17. Прибавляем, наконец, единицу, что дает 18, половина которого есть 9. Столькими способами предложенное число будет составляться из двух квадратов.
Если последнее число, от которого нужно взять половину, будет нечетным, то от него следует отнять единицу и взять половину остатка.
Можно еще задаться следующим вопросом: найти целое число, сумма которого с заданным числом будет квадратом и которое, с другой стороны, будет гипотенузой стольких прямоугольных треугольников, сколько это желательно.
Этот вопрос труден. Если, например, требуется найти число, которое будет дважды гипотенузой и при прибавлении 2 дает квадрат, то число 2023 удовлетворяет условию, имеется и бесконечно много других, как 3362 и т. д.