Надо взять все простые числа, превосходящие на единицу кратное четырех, содержащиеся в данном числе, например 5, 13, 17. Если данное число содержит степени этих простых множителей, то надо взять эти степени вместо простых множителей: пусть, например, данное число содержит
5 в кубе, 13 в квадрате и 17 как простую сторону.
Тогда надо взять показатели всех множителей, а именно для числа 5 показатель 3, присущий кубу, для числа 13 показатель 2, присущий квадрату, а для числа 17 просто единицу.
Надо упорядочить как угодно показатели, о которых шла речь, например, пусть порядок таков: 3, 2, 1.
Надо умножить первый на второй, удвоить и прибавить сумму первого и второго, будет 17. Затем умножить 17 на третий показатель, удвоить и сложить с суммой 17 и третьего, будет 52. Тогда данное число будет гипотенузой 52 различных прямоугольных треугольников. Метод останется неизменным, каково бы ни было число множителей и их степени.
Другие простые числа, которые не превосходят кратное четырех на единицу, так же как их степени, ничего не добавляют к искомому числу и ничего от него не убавляют.
Найти число, которое будет гипотенузой столько раз, сколько это желательно.
Пусть надо найти число, которое представлялось бы гипотенузой семью различными способами.
Данное число 7 удваиваем, будет 14. Прибавляем единицу, будет 15. Берем все простые делители 15, будет 3 и 5. Вычитаем из каждого единицу и берем половину остатков, получим 1 и 2. Возьмем теперь столько различных простых множителей, сколько имеется чисел, а именно два, и перемножим между собой эти простые множители, придав им показатели 1 и 2, именно один па квадрат другого; так получим число, удовлетворяющее условию, лишь бы только простые числа на единицу превосходили кратное четырех.
На основании этого легко найти наименьшее число, которое представлялось бы гипотенузой столькими способами, сколько это желательно.