Sumantur exponentes omnium divisorum Nempe numeri 5. exponens est 3. propter cubum, numeri 13. exponens est 2. propter quadratum et numeri 17. unitas tantum: ordinentur igitur ut volueris dicti omnes exponentes ut si velis. 3. 2. 1. ducatur primus in secundum bis et producto adjiciendo summam primi et secundi fit 17. ducatur iam 17. in tertium bis et producto adijciendo summam 17 et tertij, fit 52. datus igitur numerus erit hypotenusa 52. triangulorum rectangulorum, nec est dissimilis in quotcumque divisoribus et ipsorum potestatibus methodus.

Reliqui numeri primi qui quaternarij multiplicem unitate non superant nihil aut addunt quæstioni aut detrahunt neque ipsorum potestates.

Invenire numerum qui quoties quis velit sit hypotenusa: quæratur numerus qui sit septies hypotenusa, numerus 7. datus dupletur fit 14. adijce unitatem fit 15. sume omnes primos qui mensurant 15. sunt hi 3. et 5. Ab unoquoque demptâ unitate sume reliqui dimidium, fiunt 1. 2. quærantur tot primi diversi quot hic sunt numeri nempe duo et secundum exponentes 1 et 2 inter se multiplicentur nempe unus in quadratum alterius, in hoc casu satisfiet quæstioni modò primi quos sumis superent quaternarium[4] unitate, ex his constat facilè posse inveniri numerum minimum qui quoties quis velit sit hypotenusa.

Invenire numerum qui quoties quis velit componatur ex duobus quadratis: sit datus numerus 10. eius duplumn 20. cuius omnes partes primæ sumantur. 2. 2. 5. ab unaquaque tolle unitatem fiunt 1. 1. 4. sumantur igitur 3. numeri primi, (qui nempe unitate superent quaternarium,[5] ) v. g. [verbi gratia] 5. 13. 17. et quadratoquadratus unius propter exponentem 4. ducatur in reliquos duos. Fiet numerus quæsitus.[6] Ut autem dignoscatur quoties datus numerus ex duobus quadratis componitur. Sit datus numerus 325. numeri primi qui cum componunt (nempe quaternarium[7] unitate superantes) sunt. 5. 13. hic semel, ille per quadratum. Exponentes disponantur 2. 1. productus multiplicatione jingatur summæ, fit 5. cui adiunctâ unitate fit 6. cuius dimidium 3. toties igitur numerus datus componitur ex duobus quadratis, si essent 3. exponentes ut 2. 2. 1. Ita procedendum, productum sub prioribus adiunctum summæ facit 8. ducatur 8. in tertium et iungatur productum summæ fit 17. cui iunge unitatem fit 18. cuius dimidium dat 9. toties iste secundus numerus componetur ex duobus quadratis. Si ultimus numerus bifariam dividendus esset impar, tunc dempta unitate reliqui dimidium sumi debet.

Sed proponatur si placet sequens quæstio. Invenire numerum in integris qui adsumpto dato numero conficiat quadratum, et sit hypotenusa quotlibet triangulorum rectangulorum. Hæc quæstio ardua est, proponatur v. g. [verbi gratia] inveniendus numerus qui sit bis hypotenusa, et adsumpto binario conficiat quadratum. Erit quæsitus numerus 2023. et sunt alij infiniti idem præstantes, ut 3362. etc.

Перевод:

Простое число, которое превосходит на единицу кратное четырех, только один раз является гипотенузой прямоугольного треугольника, его квадрат — два раза, его куб — три раза, его биквадрат — четыре и т. д. до бесконечности.

Это же простое число и его квадрат только одним способом представляются суммой двух квадратов; его куб и его биквадрат — двумя, его квадрато-куб и кубо-куб — четырьмя и т. д. до бесконечности.[8]

Если простое число, представимое суммой двух квадратов, умножается на другое простое, также представимое суммой двух квадратов, то их произведение дважды представимо суммой двух квадратов; если множителем будет квадрат второго простого числа, то произведение будет трижды представимо суммой двух квадратов; если множителем будет куб второго простого числа, то произведение будет представимо суммой двух квадратов четырьмя способами и т. д. до бесконечности.

Из этого легко определить, сколькими способами заданное число представляется гипотенузой прямоугольного треугольника.