Возьмем две геометрические прогрессии со знаменателем 4 и имеющие первые члены 1 и 8 и напишем их одну под другой следующим образом:

1, 4, 16, 64, 256, 1024, 4096 и т. д.,

8, 32, 128, 512, 2048, 8192, 32768 и т. д.,

и рассматриваем сначала первый член второй прогрессии, т. е. 8; нужно, чтобы данное число не равнялось удвоенной единице, т. е. члену, стоящему над 8, и не превосходило на удвоенную единицу кратное от 8.

Затем рассматриваем второй член второй прогрессии, который равен 32, берем и удваиваем верхнее число, т. е. 4, что даст 8, и прибавляем к нему сумму всех предшествующих членов той же прогрессии (в данном случае эта сумма сводится к единице), что даст 9.

Возьмем число 32 и 9; тогда нужно, чтобы данное число не равнялось 9 и не превосходило 9 на кратное от 32.

Теперь рассмотрим третий член второй прогрессии, т. е. 128, удвоим стоящее выше число, т. е. 16, получим 32; прибавим сумму предшествующих членов той же верхней прогрессии, т. е. 1 и 4, получим 37. Итак, возьмем два числа 128 и 37; нужно, чтобы данное число не равнялось 37 и не превосходило 37 на кратное от 128.

Рассмотрим теперь четвертый член второй прогрессии, тем же методом получим числа 512 и 149. Итак, нужно, чтобы данное число не равнялось 149 и не превосходило 149 на кратное от 512.

Это и есть единообразный метод, который можно продолжать до бесконечности. Он не был указан в общем виде Диофантом и не был известен самому Баше; исследования этого последнего были ошибочны не только для числа 37, как я это уже указал, но и для 149 и других, которые также попадают в границы исследованных им чисел.

OBSERVATIO D. P. F