Найти прямоугольный треугольник в числах при условии9 что квадрат разности сторон при прямом угле минус удвоенный квадрат меньшей из этих сторон составляет квадрат.
Один из треугольников, который удовлетворяет вопросу, будет следующим: 1525, 1517, 156, образованный числами 39 и 2.
Добавлю с уверенностью, что два треугольника, которые были приведены как решения двух предложенных задач, являются наименьшими в целых числах, которые удовлетворяют вопросам.
Наш метод таков. Ищут решение предложенного вопроса обычным методом. Если после окончания вычислений не добиваются успеха, потому что значение неизвестного числа получается со знаком недостатка и должно быть рассмотрено как меньшее нуля, то мы с уверенностью заявляем, что не следует падать духом (и стоять разиня рот, как говорит Виет и как делал и он сам и древние аналисты), но надо вновь вернуться к вопросу и подставить вместо неизвестного X число, найденное при первом вычислении и имеющее знак недостатка. Таким образом получится новое уравнение, которое приведет к решению в настоящих числах [т. е. положительных рациональных. — И. Б. ].
Этим путем мы решили оба вышеприведенных вопроса, которые иначе были бы очень трудны; мы доказали также, что число, являющееся суммою двух кубов, может быть разложено на два другие куба, и дали их построение, которое; может потребовать повторения всей операции до трех раз а именно часто случается, что поиски истины вынуждают самого искусного и усердного аналиста к многократному повторению вычислений, как это легко обнаружить на опыте.
OBSERVATIO D. P. F
XLV (p. 338–339)
Ad problema XX commentarij in ultimam quæstionem Arithmeticorum Diophanti.
BACHETUS: Invenire triangulum rectangulum, cuius area sit datus numerus. Oportet autem ut quadratus areæ duplicate, additus alicui quadratoquadrato, faciat quadratum.
Area trianguli rectanguli in numeris non potest esse quadratus, hujus theorematis a nobis inventi demonstrationem, quam et ipsi tandem non sine operosa laboriosâ meditatione deteximus, subiungemus. Hoc nempè demonstrandi genus miros in arithmeticis suppeditabit progressus, si area trianguli esset quadratus, darentur duo quadratoquadrati quorum differentia esset quadratus: Unde sequitur dari duo quadratos quorum et summa et differentia esset quadratus. Datur itaque numerus, compositus ex quadrato et duplo quadrati, æqualis quadrato, ea conditione ut quadrati eum componentes faciant quadratum. Sed si numerus quadratus componitur ex quadrato et duplo alterius quadrati, eius latus similiter componitur ex quadrato et duplo quadrati, ut facillime possumus demonstrare.