Работы над теорией вероятностей привели Паскаля к замечательному математическому открытию, еще и теперь не вполне оцененному. Он составил так называемый арифметический треугольник, позволяющий заменять многие весьма сложные алгебраические вычисления простейшими арифметическими действиями.
Чтобы получить треугольник Паскаля, напишем горизонтальный ряд, составленный из единицы, повторенной сколько угодно раз: 1, 1, 1, 1 и т. д., и такой же вертикальный ряд. Дальнейшие числа треугольника получаются так: любое число треугольника Паскаля равно сумме числа стоящего над ним, с числом, стоящим слева от него. Так, например, написав сначала
вставляем затем число 2 таким образом:
потому что 2=1+1. Продолжая подобные действия, нетрудно составить, например, следующий треугольник Паскаля:
Первая строка (и первый столбец) состоит из единицы, повторенной несколько раз; вторая строка (и столбец) - из натуральных чисел 1, 2, 3, 4, 5 и т. д.; третья строка (и столбец) - из так называемых треугольных чисел 1, 3, 6, 10 и т. д.; в четвертой строке (и столбце) стоят пирамидальные числа 1, 4, 10 и т. д.
Чтобы понять смысл этих названий, предположим, что требуется узнать сразу, сколько ядер находится в куче, имеющей вид треугольника, например, такой: