8.10. Так как средняя энергия имеющихся № нейтронов продолжает падать, то неупругие соударения с ураном теряют свое значение, и уменьшение энергии происходит, в основном, в замедлителе. При достижении промежуточных значений энергии интервала энергий «резонансного захвата» вероятность поглощения без деления в U-238 становится значительной. Некоторое число нейтронов в этом интервале энергии будет поглощено независимо от выбора конструкции решетки. Влияние резонансного захвата можно учесть, умножив Nε на число p (всегда меньшее единицы), выражающее вероятность того, что данный нейтрон с начальной энергией выше резонансной достигнет тепловой энергии без поглощения ураном 238. Таким образом, из первоначального числа № нейтронов с высокой энергией мы получили Nεp нейтронов с тепловой энергией.
8.11. Как только нейтрон достиг тепловой энергии, вероятность дальнейшего замедления в результате соударений оказывается не большей, чем вероятность увеличения скорости. Следовательно, нейтроны будут обладать той же средней энергией до тех пор, пока они не будут поглощены. В интервале тепловых энергий вероятность поглощения нейтронов замедлителем, охладителем или вспомогательными материалами будет больше, чем в интервале более высоких значений энергии. Во всяком случае подсчитано, что если допустить, что все подобные нежелательные поглощения имеют место именно в этом интервале, то ошибка будет невелика. Введем множитель f коэффициент использования тепловых нейтронов, определяющий вероятность того, что данный тепловой нейтрон будет поглощен ураном. Таким образом, из первоначального числа № быстрых нейтронов мы получаем число Nεpf тепловых нейтронов, поглощаемых ураном.
8.12. Хотя существует несколько способов, которыми нормальная смесь изотопов урана может поглощать нейтроны, но, как может вспомнить читатель, в одной из предыдущих глав мы ввели величину η, представляющую собой число освобождаемых при делении нейтронов, приходящихся на каждый поглощенный ураном тепловой нейтрон, независимо от того, какими из этих способов осуществляется процесс. Если мы умножим число тепловых нейтронов, поглощенных ураном, Nεpf на η, то получим число новых быстрых нейтронов, рожденных № первоначальными быстрыми нейтронами в течение их жизни. Если Nεpfη > N, то развитие ценной реакции возможно, так как число нейтронов в этом случае непрерывно возрастает. Очевидно, что εpfη = k ∞, где k ∞ коэффициент размножения (см. главу IV).
8.13. Отметим, что до сих пор мы совершенно не упоминали о нейтронах, вылетающих из котла. Это было сделано сознательно, так как определенное выше значение k ∞ относится к бесконечной решетке. Исходя из известных значений k ∞ и того факта, что котлы работают, можно притти к заключению, что процент вылетающих нейтронов не слишком велик. Как видно из главы II, вылет нейтронов теряет свое относительное значение по мере увеличения размеров котла. Если приходится вводить в котел большое количество вспомогательных материалов (например, труб охладительной системы), то котлу необходимо придавать несколько большие размеры, чтобы компенсировать увеличение поглощения.
8.14. Итак, работа котла возможна благодаря применению устройства из решетки с замедлителем, уменьшающего энергии быстрых нейтронов до тепловых, и благодаря тому. что тепловые нейтроны получают возможность поглощаться ураном, что вызывает деление, воспроизводящее нейтроны с высокой энергией. Воспроизведению нейтронов в некоторой степени содействует влияние быстрых нейтронов, ему препятствует резонансное поглощение в процессе замедления; поглощение в графите и в других материалах и вылет нейтронов.
ВЛИЯНИЕ ПРОДУКТОВ РЕАКЦИИ НА КОЭФФИЦИЕНТ РАЗМНОЖЕНИЯ
8.15. Даже при той большой мощности, которой обладали котлы в Хэнфорде, на каждый миллион граммов заложенного в систему урана расходовалось в сутки лишь несколько граммов U-238 и U-235. Тем не менее, влияние этих изменений было весьма важно. По мере истощения U-235 концентрация плутония увеличивалась. К счастью, сам плутоний испытывает деления под действием тепловых нейтронов и, таким образом, стремится компенсировать, поскольку дело касается поддержания цепной реакции, уменьшение U-235. Однако, при работе котла получаются и другие продукты деления. Они обычно состоят из неустойчивых и сравнительно мало известных ядер, и вначале было невозможно предсказать, сколь велики будут те нежелательные влияния, которые могут оказать продукты деления на коэффициент размножения. Такие вредные влияния называются отравляющими. Несмотря на большое количество предварительных исследований продуктов деления, непредвиденный отравляющий эффект такого рода едва не заставил приостановить работы в Хэнфорде, с чем мы встретимся позднее.
ПРОДУКТЫ РЕАКЦИИ И ПРОБЛЕМА РАЗДЕЛЕНИЯ
8.16. В хэнфордской установке процесс производства плутония разделяется на две главных части: собственно получение его в котле и выделение его из блоков урана, в которых он образуется. Переходим к рассмотрению второй части процессу выделения.
8.17. Блоки урана, кроме плутония, содержат также и другие элементы, образовавшиеся в результате деления U-235. Когда ядро U-235 делится, оно испускает один или более нейтронов и распадается на две сравнимых по величине части с общей массой 235 или немного меньше. Деление на равные в точности массы, повидимому, случается редко. Наиболее часто получаются осколки с массовыми числами между 134 и 144 и между 100 и 90. Таким образом, имеются две группы продуктов деления: тяжелая группа с массовыми числами в пределах, приблизительно, от 127 до 154 и легкая группа с массовыми числами от 115 до 83. Эти продукты деления являются, в основном, неустойчивыми изотопами приблизительно 30 известных элементов, расположенных в периодической таблице внутри указанного диапазона массовых чисел. Обычно они распадаются, последовательно испуская β -частицы и γ -лучи и превращаясь в известные нам устойчивые ядра. Периоды полураспада различных ядер, образующихся на промежуточных стадиях рассматриваемых превращений, лежат в пределах от долей секунды до одного года и более. Некоторые ядра обладают периодом полураспада порядка одного месяца. Около 20 элементов присутствуют в значительной концентрации. Наиболее распространенный из них составляет несколько меньше 10 % общего количества.