Berechnung der Richtung schräger Linien ohne Hilfe ihrer Fluchtpunkte.
[§ 45.] Man bedient sich jedoch, um die Richtung verkürzter schräger Linien zu berechnen, selten ihrer Fluchtpunkte, da dieselben in den meisten Fällen ausserhalb der Zeichenfläche liegen. Den nächstliegenden Ersaz bietet die senkrechte und wagrechte Linie ihres Massdreiecks. Ist Richtung und Länge der wagrechten sowie die Höhe der senkrechten Linie eines solchen Dreiecks gegeben oder leicht zu berechnen, so ist damit auch die Richtung (und Länge) der betreffenden schrägen Linien gefunden.
Nehmen wir z. B. an, dass in [Fig. 38] die Linie A C gegeben sei und darüber ein Giebel von beliebiger Höhe, dessen 2 Seiten mit A C in Wirklichkeit ein gleichschenkliges Dreieck bilden, gezeichnet werden soll, so kann k als perspectivische Mitte von A C durch die Diagonalen eines Rechtecks A C E D oder A C g f gefunden und in k eine Senkrechte errichtet werden, in welcher die Spize des Giebeldreiecks liegen muss. – Ist das Dreieck A B k gegeben, so dass der Punkt C bestimmt werden muss, so bildet man mit A k und einer beliebigen Parallellinie, z. B. i D, ein Rechteck A k i D und zieht eine Linie von D durch die Mitte von i k nach der verlängerten A k, wodurch C k = A k gemacht ist.
Fig. 38.
Soll, nachdem D F und D E gegeben sind, von E abwärts eine Linie gezeichnet werden, welche denselben Neigungswinkel hat, wie D F, so wird leztere verlängert bis e, wo sie die senkrechte Mittellinie trifft und von e durch E die Linie E G gezogen. – Oder kann von F eine mit D E parallele Linie nach links und die senkrechte Mittellinie von E D f g gezogen, die von y nach H H gehende Senkrechte halbiert und hierauf durch eine Linie von r durch diesen Halbierungspunkt der Punkt G bestimmt werden.
[§ 46.] In [Fig. 39] ist angenommen, dass die perspectivische Richtung und Länge der Linien A B und A C, die Höhe A a und die Breite a c bestimmt seien, womit auch die Richtung der schrägen Linie A c gegeben ist, in welcher die inneren Ecken der Stufen liegen müssen; die äusseren Ecken liegen in einer mit A c parallel von a ausgehenden Linie, deren Richtung gefunden wird, indem man c d = b c macht. Eine Linie von d nach dem Fluchtpunkt von A C ergibt e, eine Senkrechte von hier den Punkt f. Bildet man hierauf das Rechteck A C h g, so kann mittels seiner Diagonalen m n als senkrechte Mittellinie gefunden werden; C m n ist demnach = A m n und die Ecken der ferneren Stufen können durch die von a und k nach dem Fluchtpunkt von A C gezogenen Linien und die entsprechenden Senkrechten gefunden werden. (Übrigens kann dieselbe Aufgabe auch ohne Hilfe der zweiten schrägen Linie gelöst werden: man macht a k und k g = A a, zieht von diesen Punkten aus die mit A C parallelen Linien und erhält die Punkte d und f durch die in c und e errichteten Senkrechten.) Die übrigen Linien der Figur sind teils senkrecht, teils sind sie parallel mit A C oder mit A B.
Fig. 39.
[§ 47.] Ein Beispiel, wie die Richtung verkürzter schräger Parallellinien ohne Hilfe ihres Fluchtpunkts berechnet werden kann, ist auch in [Fig. 31] enthalten, wo, um den Punkt F zu finden, B r und C r gezogen und in r eine Senkrechte errichtet wurde, welche auf der von E ausgehenden Wagrechten den Punkt F und hiemit die mit D E parallele Richtung der Linie G F ergibt. Auf dieselbe Weise kann in [Fig. 40], wenn das Dreieck A B D und die Wagrechte A C gegeben sind, die Richtung der mit A D parallelen Linie C E berechnet werden, indem man von C eine mit A B, von d und D zwei mit A C parallele Linien zieht und in e eine Senkrechte errichtet. Ebenso kann F n gefunden werden durch die Linien F m und m n.
Fig. 40.
In [Fig. 38] kann von p aus eine Linie parallel mit A B gezeichnet werden mittels der Linien k x, p x und einer in x errichteten Senkrechten. Oder kann man in A und p 2 Senkrechte errichten, B b parallel mit A C, b o parallel mit A p ziehen und hierauf durch eine weitere mit A C parallele Linie von o aus den Punkt n bestimmen.
Soll von D aus abwärts eine mit A B parallele Linie gezeichnet werden, so kann durch die Verlängerung von A B, A C und D E ein Dreieck A c d gebildet und d h = c d gemacht werden, wodurch D h parallel mit B A ist. Oder kann, nachdem das Dreieck A B b gezeichnet ist, D a = A b gemacht und von a eine mit A C und b B parallele Linie bis zu der Senkrechten B k gezogen werden, wodurch e D parallel mit A B ist und von D aus verlängert werden kann. Es könnte ferner, wenn F z geometrisch = y z ist, durch den Halbierungspunkt von D z eine Linie von i nach der verlängerten y z gezogen werden.
[§ 48.] In [Fig. 41] sei A G a und A o gegeben. Um die Richtung der parallel mit A a von B, i und o ausgehenden Linien zu berechnen, ist durch den Halbierungspunkt der Senkrechten n a eine mit A G parallele Linie nach f und von hier aus f g als wagrechte Mittellinie des Daches gezogen, welche nun ähnlich wie die Mittellinien in [Fig. 31] benüzt werden kann, um zwischen A B und a p beliebige mit A a parallele Linien z. B. B b, i k und o p zu zeichnen: man zieht a B und A r b, b i und B s k u. s. w. Die Richtung der Linie C c ist auf die in [§ 45] [Fig. 38] angegebene Weise berechnet: d h ist = n a gemacht und von h eine Linie durch C nach der verlängerten m z gezogen. Der Punkt F ergibt sich durch eine parallel mit A G von E nach der Verlängerung von b B gezogenen Linie; eine Senkrechte von F abwärts schneidet die von c nach rechts gehende Wagrechte in e, womit E e gegeben ist.
Fig. 41.
Sind auf solche Weise einige Parallellinien gezeichnet, so kann die perspectivische Richtung weiterer zwischen ihnen liegender Linien auch ohne genaue Berechnung jeder einzelnen ohne Schwierigkeit bestimmt werden.