Canned Vegetables.

It probably will excite no opposition to state that if fresh, succulent vegetables can be placed upon the table of the consumer they are to be preferred to the same kind of vegetables preserved in any manner. There are many circumstances, however, which render it difficult, if not impossible, to secure a regular supply of fresh, succulent vegetables upon the consumer’s table. Those who possess abundant wealth may have a proper supply of vegetables at all seasons of the year without resorting to any preserving process other than the refrigeration incident to transportation. But the great majority of consumers must of necessity adapt themselves to the conditions of the market and the proximity of supply. Succulent vegetables properly harvested and refrigerated may be sent long distances and over a considerable period of time, and reach the consumer in practically the same state of freshness and palatability as when first harvested. Owing to the exigencies of intermediary supply and the cost of transportation the great industry of keeping succulent vegetables by sterilization has been founded. Commonly vegetables prepared in this way are known as “canned” vegetables in this country and “tinned” in England. By availing himself of this process the consumer, even of moderate means, is able to command at all seasons of the year and in all locations an abundant supply of wholesome, fresh, succulent vegetable materials.

Principles and Process of Canning.

—The sterilization of succulent vegetables depends upon the same principles as that of meat, already described. The decay of these vegetable substances is due to the action of certain ferments, either organic or inorganic, which act as agents in securing the oxidation and decay of the organic material. If the action of these organisms can be prevented or inhibited the food material will remain for a certain length of time, not yet definitely determined, in an excellent, almost perfect state of preservation and without losing, notably, any of its nutritive or palatable properties.

It is not the purpose of this manual to describe the technique of canning, further than to illustrate the principles thereof in their relations to wholesome and nutritive food.

Selection of Materials.

—It is of the highest importance in the canning industry, both for the reputation of the manufacturer and the health and comfort of the consumer, that the vegetables selected for canning be fresh, free from disease, and prepared in such a way that all adhering dirt or other foreign substances be excluded. The process of preparation for canning should begin as soon as possible after the harvesting of the vegetables, since a delay, especially at the high temperature which usually prevails at the time of canning, produces rapid deterioration, both as respects the quality of the vegetable and its flavor. After the proper cleaning and preparation of the fresh vegetables they are next subjected to the process of canning. It is then the vegetables are heated to a temperature of, or above, that of boiling water for a sufficient length of time to thoroughly destroy all the living germs and spores contained therein. The degree of temperature and the length of time of heating depend upon the nature of the vegetable substance, the size of its particles and of the package and the relative difficulty of preservation. Where only living organisms are present the proper temperature is that which will destroy the life of the germ. It is well known that spores from which fermentative germs may be developed are more resistant to the action of heat than the germ itself. When, therefore, spores of this kind are present, the temperature of heating must be higher and the time more prolonged, or, in lieu of this, the food should be heated on two or three consecutive days during which time any spores which may have been present will have developed into organisms and been killed. Some forms of vegetable materials are sterilized much more readily than others. For instance, the kernels of green Indian corn are of such a character and degree of hardness as to resist, with a considerable degree of success, the influence of heat on the life of the germs which they contain. In such cases it is customary to previously cook the vegetable substance before placing it in the cans. The cans should contain enough water to fill the interstices between the particles of vegetable matter. It is the practice in many instances to add a little salt and sometimes also sugar to this liquid. When the can is filled and closed the sterilizing is best completed by placing it in a strong boiler, which is then closed and heated by steam under a pressure of two or three atmospheres or even higher, namely, from 30 to 45 pounds and over per square inch. By heating under pressure in this way the development of any pressure in the can due to the production of steam is counterbalanced by the pressure without the can, so that a swelling or cracking of the can cannot take place. If the cans are heated in an open bath of water or brine it is customary to leave a small perforation in the top of the can through which the combined gas of the interior of the can may escape, and this vent is closed by a small drop of solder applied before or at the time of taking the cans from the bath. The canning of vegetables may also be done in a small way in the household and the principle on which this process is based is exactly the same as that set forth. The vegetables must be properly prepared, placed in the cans, and heated a sufficient length of time to destroy germs and spores, and the vent in the can stopped with solder. For family purposes the use of closed boilers for heating is not practical on account of the expense of securing such apparatus. All kinds of vegetables which are eaten in a cooked state can be preserved by the canning process. This cannot be applied, however, to those forms of vegetables which are eaten raw, such as lettuce, radishes, etc.

The principal forms of canned vegetables are described below:

Canned Beans.

—Fresh, green beans used for canning purposes are generally preserved in the pod and not shelled, as is the case with the pea. The raw material should be selected with the same care as that which attends the selection of other vegetable products intended for preserving purposes. If the pods are small they may be placed whole in the can. Sometimes they are cut into small lengths in order to fit better in the package. As in the case of peas, the interstices between the particles of beans are filled by the addition of a sufficient quantity of brine of the proper strength to fill the can to the top. The process of sterilization is the same as that for other vegetable substances. Cooked beans are also preserved by canning and are often improperly called baked beans.

Composition of Typical Samples of Canned Beans.

—The composition of typical samples of canned beans is shown in the following table:

Substance.Water.Fat.Fiber.Starch
and
Sugar.
Protein.Ash.Salt.
Per-
cent.
Per-
cent.
Per-
cent.
Per-
cent.
Per-
cent.
Per-
cent.
Per-
cent.
String beans,94.33 .06 .51 3.03 .921.16 .80
Unstringed beans,93.91 .07 .58 2.911.141.40 .92
Lima beans,79.68 .301.1613.244.001.62 .77
Canned baked beans,67.193.182.4617.887.142.151.03

As in the case of peas it is noticed that the beans in the hull are not a particularly nutritious vegetable in proportion to the quantity consumed and that the protein is the most valuable constituent in the dry matter.

Adulteration of Canned Beans.

—The same adulterations may be found in canned beans as in canned peas. No additional remarks, therefore, are needed on this point.

Both canned peas and beans form condimental, palatable, wholesome, and desirable forms of these leguminous vegetables. The great cheapness with which they can be grown and the improved method of canning make it possible to produce these articles of food in quantities, and for a price which bring them within the reach of those even in the most humble circumstances.

Fig. 44.—View of Indian Corn Canning Factory, Showing Accumulation of Husks and Cobs.

As soon as the manufacturer restores absolute confidence in the purity of his products by completely excluding all adulterations the trade in these articles will be greatly increased and immensely greater quantities thereof consumed.

Canned Indian Corn.

—In the United States a dish which is very extensively consumed throughout all parts of the country is one almost unknown in Europe, namely, succulent Indian corn. In the growth of Indian corn, at the period when the starch is formed in the grain and before it becomes set or hard, the immature grains make a palatable and excellent food product. In the appropriate season this delicious vegetable substance is eaten principally on the cob. A variety of Indian corn, which has already been described, namely, sweet corn, is the one chiefly used for edible purposes in this immature state. The Indian corn canning industry is a most extensive one in this country. The estimate of the number of cans of Indian corn produced during the year ended Dec. 31, 1905, is 13,939,683 cases of 24 cans each.

The principal centers of the industry are found in the New England States, especially in Maine, New Jersey, Maryland, New York, Ohio, Iowa, Illinois, and Indiana. By planting different varieties of Indian corn which mature at different ages and extending the planting season over a long period, the canning season, for instance, in Maryland, may be continued from the last of July to the advent of killing frost, usually the middle or last of October.

Technique of the Process.

—The ears of sweet Indian corn are plucked from the stalk together with the husks, and brought in wagons in this condition to the factory. The husks are removed by hand or machinery and the ears passed through machinery by means of which, owing to the operation of knives, the grains are as evenly as possible removed from the cob. Care is taken not to cut too close to the cob so as to avoid mingling any of its particles with the corn. The separated grains are put into cans, treated with a sufficient quantity of water to fill the interstices, soldered, and subjected to sterilization. Nearly all of these operations are conducted by machinery. The sterilization is often effected by placing the cans upon an endless conveyer dipping into water or brine of the proper temperature and moving slowly through this bath at a pace determined by the length and temperature thereof, so that upon emerging the sterilization is complete. The cans may also be heated in closed vessels as already described. A typical view of a factory employed in the canning of Indian corn is given in the accompanying illustration, [Fig. 44].

Composition of Canned Indian Corn.

—The composition of canned Indian corn varies so greatly that it is only possible to give analyses of a somewhat general character, without attempting to express the extremes of composition which may be found. The immature Indian corn differs from the dry mature variety principally in the following respects: There is usually more sugar, as compared with the same amount of dry substance, and less starch and protein than in the matured variety. In fact, the constituent which is of chief value in the green Indian corn is the natural sugar which it contains. This natural sweetening cannot be imitated by the addition of sugar although the mixture may be made very sweet by this method. There is a delicacy of flavor and a peculiar palatability in the natural sweetness of Indian corn which must necessarily be due to the form of combination with other natural ingredients in which the sugar is found, and not solely to the sugar itself, which is practically ordinary sugar, sucrose, or its inverted product. While there is less starch in the immature kernel of Indian corn the starch is in a different physical state. In other words, it has not become solidified into aggregates of solid particles. The starch in this form also appears to be more palatable, and perhaps somewhat more digestible, than in its aggregate and solidified condition. As a nutrient the green corn is not so valuable by any means as its equal weight when dry. The percentage of water in green corn is many times as great as in the dry variety. For mere nutritive purposes, therefore, it would not be worth while to go to the trouble of canning green Indian corn. Its value is that which is attached to a succulent fresh vegetable, that is, it is condimental and hygienic as well as nutritive.

The mean analysis of many samples of canned sweet Indian corn is given below:

Water,75.50percent
Dry matter,24.50
Oil and fat,1.26
Cellulose,.79
Ash,.93
Salt,.23
Protein,3.51
Sugar and starch,17.58

These data were obtained on samples bought in the open market, some of which had been artificially sweetened and to some of which starch had probably been added. The analysis of the fresh green corn is given on [page 227].

Adulteration of Canned Corn.

—Unfortunately many adulterations have been practiced in connection with the canning of Indian corn which, while not extensive or applicable to the great mass of material, have cast an unjust suspicion on the unadulterated product. The trade in this canned product would be vastly increased if the consumer could be assured that all forms of adulteration had been eliminated from the industry. The principal adulterants used are mentioned on [page 228], but the following additional statements are pertinent:

Adulteration with Starch.

—In order to make a more creamy liquid in the can the addition of starch has been largely practiced. There are two objections to the addition of starch to canned corn. In the first place it unbalances the ration and makes it more or less unwholesome. Starch itself is an unbalanced food product, but Nature has so distributed the starches in various foods as to present them in the most favorable form for digestion and assimilation, and when this natural balance is disturbed by artificial means the result is more or less injurious to the organs of digestion. There are many persons to whom starchy foods are not nutritious nor easily digested, and when persons of this kind consume canned Indian corn to which starch has been added their health may be injured. The addition of starch, therefore, is reprehensible for hygienic reasons. In the second place it is objectionable because it is deceptive, since the canned product has a richer and better appearance to the eye by this addition than it otherwise would have, and because more water can be used in the can.

Adulteration with Sugar.

—It seems strange to speak of adulterating with sugar, and yet the addition of sugar without notice to canned Indian corn may become an adulteration. It has already been mentioned that the nature of Indian corn for canning purposes depends very largely upon its natural sugar content, and when corn of the proper sweet variety is selected the addition of other sweetening material is unnecessary. The use of sugar, therefore, in connection with canned Indian corn serves to cover up the defects of a corn whose natural sweetness is below the standard and thus the consumer is deceived. In addition to this, attention is also called to the fact already stated that no artificial sweetening, even with sugar, can produce that delicate and desired saccharine quality which the natural sweet corn possesses. The addition of sugar, therefore, to canned Indian corn without the notice thereof being plainly stated on the label is not to be encouraged.

Addition of Saccharin.

—The use of benzoic sulfinid, or, as it is commonly known, saccharin, to canned corn unhappily is too often practiced. This body, which has no relation chemically or hygienically to sugar, which is not a food, which is wholly indigestible, and which the majority of experts regard as harmful to health, should never be placed in canned Indian corn, even if its use is notified upon the label. It produces an intense, but not agreeable, sweet taste and yet one which the unwary consumer would naturally attribute to the sugar present in the corn itself. Thus the consumer is deceived, and at the same time he is consuming a drug which has valuable uses in medicine but which should only be administered with the consent and by the advice of a physician. It is believed that under the scrutiny of municipal, state, and national inspection the use of saccharin in food products will disappear. Moreover, the name saccharin itself is misleading. It is an application of a word which by common usage is attributed to natural sugar substances to a substance which has no relation of any kind to sugar. The use of a word of this kind is evidently objectionable. The canner himself who uses this product often buys it under another name, which gives no indication of its true character.

Character of the Cans.

—It is important that the containers in which canned vegetables are preserved should be of a character to yield no poisonous or injurious substance to the contents therein. What is said here in respect of canned Indian corn is generally applicable to canned products of all descriptions.

The approved standards for food products in the United States require the following properties for the containers:

“I. Suitable containers for keeping moist food products such as sirups, honey, condensed milk, soups, meat extracts, meats, manufactured meats, and undried fruits and vegetables and wrappers in contact with food products contain on their surfaces, in contact with the food products, no lead, antimony, arsenic, zinc, or copper or any compounds thereof or any other poisonous or injurious substance. If the containers are made of tin plate they are outside soldered and the plate in no case contains less than one hundred and thirteen (113) milligrams of tin on a piece five (5) centimeters square or one and eight-tenths (1.8) grains on a piece two (2) inches square. The inner coating of the containers is free from pin-holes, blisters, and cracks.

“If the tin plate is lacquered, the lacquer completely covers the tinned surface within the container and yields to the contents of the container no lead, antimony, arsenic, zinc, copper, or any compounds thereof.”

Souring and Swelling of Canned Corn.

—In all cases where sterilization is not complete, or where spores remain undestroyed which afterward develop and produce various kinds of ferments, the canned corn spoils. The contents usually become sour and acquire a bad taste, and, in many cases, on puncturing the container gas escapes. The pressure of this gas in the can is sometimes great enough to produce a swelling, and hence the technical term “swelled” applied to cans of this kind. Various forms of ferments are active in producing these conditions. The usual alcoholic ferment does not usually occur by reason of the fact that the yeasts which produce this form of fermentation are readily destroyed in the sterilizing process. Ferments which produce lactic, butyric, and other acids, and those which act upon the nitrogenous matter and tend to form various decomposition products are the most common.

In the case of canned corn and other canned vegetables the nitrogenous decomposed products are not usually very poisonous. On the other hand in the case of meat, and especially of fish and crustaceans, the degradation products from the nitrogen constituents of the food become poisonous and are known collectively under the name of ptomains.

If the sterilization has not been complete at the time of preparation, sweet corn as well as other foodstuffs in similar circumstances undergoes a kind of fermentation which renders it unfit for food. The fermentation is usually due to the greater vitality of spores and fungi, the real bacteria usually succumbing to the heat of preparation. Various gases beside carbon dioxid are produced, causing the corn to swell. All swelled goods should be rejected for food purposes.

Canned Peas and Beans.

—These leguminous products lend themselves readily to canning purposes, and are preserved in great quantities in the United States in this way. Peas are always shelled before canning, and are harvested at a time to secure their greatest succulence. If the peas be too ripe they make a hard, unpalatable berry which detracts from the value of the canned product. The smaller variety of pea is preferred to the larger for canning, but, irrespective of size, they should be fresh, succulent, and not too mature. In the large canning factories the peas are harvested with machines such as are used for the cereals. The harvested material is passed through a shelling machine, by means of which the pods are opened and the peas separated. The rest of the pods, stalks, leaves, etc., are very valuable for cattle food or fertilizing purposes. Peas, before canning, should be separated into different sizes so that all those entering one can may be as nearly uniform in size as possible. This separation not only makes the contents of the can appear more attractive but also renders the sterilization more certain and easy. If a large and small pea are put in the same can the heat of sterilization must be high enough and continue long enough to sterilize completely the large pea, and this might induce an over-cooking and impair the edible properties of the small one.

The technique of the canning process is not at all different except in the preparation of the material, as described above, from that of other vegetable canning factories.

Composition of Canned Peas.

—The composition of typical varieties of canned peas compiled from a large number of analyses is shown in the following table:

Water,85.47percent
Fat,.21
Fiber,1.18
Protein,3.57
Starch and sugar,7.79
Ash,1.11
Salt,.67

From the above data it is seen that the canned pea does not have a high nutritive value, considering its bulk. In the canned pea one of the principal food elements in the wet material is the protein which it contains, both the pea and the bean being very rich in this important food material.

Adulteration of Canned Peas.

—The principal form of adulteration which is practiced in the canning of peas is the addition of sulfate of copper for the purpose of producing an intense green color. The delicate shade of green of the fresh, succulent pea tends to assume a yellowish tint on canning, and especially after keeping for some time. To such an extent does this oxidation of the natural chlorophyl go on that in many samples when opened, instead of a green, we discover a decidedly yellowish tint. When a copper salt, such as sulfate, is heated in contact with a nitrogenous substance, such as that which exists in the pea, a chemical combination is formed between the copper and nitrogenous bodies which has an intensely green tint.

It is often supposed that the sulfate of copper is added to canned peas to preserve their natural color. This, however, is not the case. The copper combination, as above mentioned, produces a dye of a very bright green hue. Sulfate of copper is a highly poisonous substance, and for this reason should be excluded from food products. It is only fair to state that those who use this material claim that in the form of the combination produced it remains insoluble during the process of digestion, and therefore the copper is inert. This claim is not sustained by the facts in the case. It is quite certain that the copper product forming the dye or the excess of the copper which is used remains in a state of very unstable composition which is easily broken up under the action of the acids and enzymes in the digestive organs.

It is greatly to the credit of the canners of the United States that the use of sulfate of copper has never come into use in this country.

Tests for Copper.

—Fortunately the presence of copper in canned peas is easily ascertained even by the novice. If a portion of the peas be rubbed in a mortar to a fine paste and mixed with water acidulated with two or three drops of hydrochloric acid, a paste will be formed which on boiling will deposit copper on a clean metallic substance such as silver, steel, or iron. If a bright steel knife or a clean iron nail be placed in this paste, the surface will soon be covered with metallic copper. This simple test shows that the copper is not combined in any such permanent form as is claimed.

Saccharin.

—The use of saccharin as an imitation of the natural sweet of the pea is, unfortunately, very largely practiced and is open to the same objections as were pointed out in the case of Indian corn. The use of sugar, salt, and other condimental substances in canned peas cannot be regarded as an adulteration unless deception results therefrom. It is claimed there is no special variety of pea distinguished by its content of sugar, and therefore the addition of sugar does not cause one variety of pea to imitate the properties of another. If this be true no deception is practiced, and, if the sugar is pure, no injury is done. In all cases of this kind, perhaps, it would be better if the manufacturer would plainly mark on the label the name of the added materials. Then there could be no question of the nature of the product.

Canned Tomatoes.

—Next, perhaps, in importance to the industry of canned corn, is the preservation of tomatoes. Immense quantities of these goods are produced annually in the United States. The technique of the canning process is not at all different from that of canned corn. By reason of the pulpy condition of the material and its freedom from hard and impenetrable matter in the preparation for canning, the sterilization is accomplished in less time and with greater certainty than in the case of Indian corn.

Preparation of the Raw Material.

—Only fresh, ripe, mature, and sound tomatoes should be used in the preparation of the canned goods. These are delivered by the farmer or contractor in baskets or otherwise to the factory. After sorting and rejecting all those that are unfit, the portions selected for preservation are treated in the usual manner to secure sterilization.

The skins, cores, and rejected portions of the tomatoes should be removed to a sufficient distance from the factory to prevent any bad odor or danger of infection.

Composition of Canned Tomatoes.

—The chemical composition of canned tomatoes is shown in the following analysis:

Water,93.59percent
Fat,.23
Fiber,.60
Starch and sugar,3.47
Protein,1.29
Ash,.66
Salt,.14

From the above data it is seen that the tomato is not particularly valuable on account of its nutrient properties. It consists chiefly of water, and its value as a food product is principally condimental. It must not be denied, however, that it has that peculiar value which is possessed by all edible succulent vegetables and fruits, namely, it is a means of keeping the digestive processes in good form, preventing constipation, and promoting the general metabolic activity. In this sense it is seen that it is more than condimental. It also, of course, has a distinct food value, due chiefly to the carbohydrates it contains.

Addition of Sugar and Spices.

—Sugar and other condimental substances are often used in the preparation of tomatoes. In this case it is doubtful whether the addition of pure sugar can be regarded in any sense as an adulteration if properly notified on the label. It is claimed that there is no distinction in the classification of tomatoes based upon their sugar content. If there was a variety of distinctly sweet tomato as distinguished from the ordinary field crop, then the addition of sugar to the field crop to imitate the sweet of the naturally sweet article would be an adulteration. But even in this case unripe or imperfect tomatoes may be used and sugar added to conceal inferiority. The use of common condimental substances, such as salt, spices, vinegar, etc., in the preparation of various products of tomatoes must be regarded as a perfectly legitimate operation.

Adulteration of Canned Tomatoes.

—Fortunately there are few adulterations practiced in the case of canned tomatoes. The use of antiseptics to insure the conservation of the contents of the can was formerly practiced to some extent, salicylic and benzoic acids being the chief antiseptics employed. Since it has been made possible to easily, speedily, and economically sterilize the contents of the cans, the use of antiseptics is practically a thing of the past. The most common adulteration of tomatoes, perhaps, has been artificial coloring. The use of artificial coloring is resorted to solely for deceptive purposes. Where green or immature tomatoes are used, or other portions and parts of such fruits as are not suitable for the production of the highest grade products, the naturally red color of the tomato is imitated artificially, usually by the addition of cochineal or a coal tar dye. The use of artificial color in canned tomatoes has almost ceased in this country.

Saccharin is also sometimes used as an adulterant to imitate the properties of pure sugar.

It has already been intimated that green or unfit tomatoes or the residue of better grades are sometimes prepared and sold as the real article. This is a form of adulteration which is most reprehensible. Unfortunately, except in so far as the artificial color is concerned, this adulteration is not readily revealed by either chemical or microscopic examination, although the latter is exceedingly valuable in detecting certain forms of this kind of material. Only by a rigid inspection of the factories can this form of adulteration be excluded with certainty. The use of such immature fruits or scraps without notice to the consumer is, without doubt, an adulteration of an exceedingly bad type. If there be a desire to make a very cheap grade of the product out of these materials the nature of them should be plainly stated upon the label and then, perhaps, there would be a valid excuse for their appearance on the market.

Other Canned Vegetables.

—There is no necessity to enter into the detail of the preparation of other canned vegetables further than to say that practically all vegetables which are offered on the market, except those which are necessarily eaten in a raw state, are preserved or can be preserved by the sterilizing process.

Tomato Ketchup.

—A sauce which is used in large quantities in the United States and in other countries is known as tomato ketchup and is manufactured in many parts of the country. Tomato ketchup is the pulp of sound, ripe tomatoes mixed with various condimental substances and flavoring matters to make it palatable and desirable as a sauce. The character of flavor and condimental substances employed is left to the judgment of the manufacturer and the taste of the consumer, provided the materials are wholesome and sanitary. It has been claimed by some manufacturers that it is impracticable to place this desirable product upon the market without the use of chemical antiseptics. They admit, as in the case of the manufacture of fruit sirups, that tomato ketchup can be sterilized and kept properly until the bottle is opened for consumption; but, inasmuch as it is used in small quantities and a bottle of it lasts for many days, it cannot be kept in a proper state except by the use of such preservatives. The principal antiseptics which are used in connection with tomato ketchup are salicylic and benzoic acids.

Experience has shown that these claims are not of sufficient value to warrant the exception of tomato ketchup from the ordinary regulations respecting pure food. The habit of leaving a tomato ketchup bottle upon the table where the material adheres to the rim and becomes hardened to a gummy paste, serving as a pabulum for flies, does not appeal with any great force to the æsthetic sense relative to dining rooms. A ketchup bottle carefully opened and used in such a way as to avoid infection and then returned to the ice box can be kept for many days without danger of fermentation.

Artificial Colors.

—Tomato ketchup is sometimes subjected to artificial coloring. This is done to imitate the color of the best raw material. If red, ripe, sound tomatoes are used no artificial color is necessary.

Use of Refuse for Making Ketchup.

—It has been stated that the ripe, imperfect tomatoes at the time of harvesting are cooked in large quantities and treated with benzoic acid and stored in large containers until the canning season is over, after which this material is made into ketchup and artificially colored. Further statements have also been made to the effect that the skins, cores, and refuse of the cannery have been treated in the same way as indicated below. The proper inspection of the factories would exclude from the preparation of ketchup unfit material of the kind mentioned. It is doubtless true that when the people are finally convinced that the ketchup which is used is made of the best material and contains no artificial color or no harmful antiseptic, its use will be immensely increased.

A manufacturer of ketchup recently made the following statement respecting the utilization of the refuse matter at the cannery:

“We use in our standard catsup the peelings and small tomatoes. We preserve the pulp with four ounces of sodium benzoate to each 50 gallon barrel, cooked and whipped through a cyclone pulp machine. It takes two barrels of this stock to produce 60 gallons of catsup, and we use eight ounces more of sodium benzoate to preserve it.”

If waste material of this kind is sound and wholesome, there can be no valid objection to its use if the product be offered for sale under its proper designation.