HYDRAULIC POWER
A few words should be said about the familiar method of transmitting power with the aid of water, as illustrated by the hydrostatic press. This does not indeed utilize the energy of the water itself, but it enables the worker to transmit energy supplied from without, and to gain an indefinite power to move weights through a short distance, with the expenditure of very little working energy. The principle on which the hydrostatic press is based is the one which was familiar to the ancient philosophers under the name of the hydrostatic paradox. It was observed that if a tube is connected with a closed receptacle, such as a strong cask, and cask and tube are filled with water, the cask will presently be burst by the pressure of the water, provided the tube is raised to a height, even though the actual weight of water in the tube be comparatively slight. A powerful cask, for example, may be burst by the water poured into a slender pipe. The result seems indeed paradoxical, and for a long time no explanation of it was forthcoming. It remained for Servinus, whose horseless wagon is elsewhere noticed, to discover that the water at any given level presses equally in all directions, and that its pressure is proportionate to its depth, quite regardless of its bulk. Then, supposing the tube in our experiment to have a cross-section of one square inch, a pressure equal to that in the tube would be transmitted to each square inch of the surface of the cask; and the pressure might thus become enormous.
If, instead of a tube lifted to a height, the same tube is connected with a force pump operated with a lever—an apparatus similar to the fire-engine of Ctesibius—it is obvious that precisely the same effect may be produced; whatever pressure is developed in the piston of the force pump, similar pressure will be transferred to a corresponding area in the surface of the cask or receptacle with which the force pump connects. In practise this principle is utilized, where great pressure is desired, by making a receptacle with an enormous piston connecting with the force pump just described.
An indefinite power may thus be developed, the apparatus constituting virtually a gigantic lever. But the principle of the equivalence of weight and distance still holds, precisely as in an actual lever, and while the pressure that may be exerted with slight expenditure of energy is enormous, the distance through which this pressure acts is correspondingly small. If, for example, the piston of the force pump has an area of one square inch, while the piston of the press has an area of several square feet, the pressure exerted will be measured in tons, but the distance through which it is exerted will be almost infinitesimal. The range of utility of the hydrostatic press is, therefore, limited, but within its sphere, it is an incomparable transmitter of energy.
HYDRAULIC PRESS AND HYDRAULIC CAPSTAN.
The upper figure shows Bramah's original hydraulic pump and press, now preserved in the South Kensington Museum, London. The machine was constructed in 1796 by Joseph Bramah to demonstrate the principle of his hydraulic press. The discrepancy in size between the small lever worked by hand and the enormous lever carrying a heavy weight gives a vivid impression of the gain in power through the use of the apparatus. The lower figure shows the hydraulic capstan used on many modern ships, in which the same principle is utilized.
Moreover, it is possible to reverse the action of the hydraulic apparatus so as to gain motion at the expense of power. A familiar type of elevator is a case in point. The essential feature of the hydraulic elevator consists of a ram attached to the bottom of the elevator and extending down into a cylinder, slightly longer than the height to which the elevator is to rise. The ram is fitting into a cylinder with water-tight packing, or a cut leather valve. Water under high pressure is admitted to the cylinder through the valve at the bottom, and the pressure thus supplied pushes up the ram, carrying the elevator with it, of course. Another valve allows the water to escape, so that ram and elevator may descend, too rapid descent being prevented by the partial balancing of ram and elevator with weights acting over pulleys. The ram, to the end of which pressure is thus applied, need be but a few inches in diameter. Water pressure is secured by bringing water from an elevation. Such an elevator acts slowly, but is a very safe and in many ways satisfactory mechanism. Such elevators are still used extensively in Europe, but have been almost altogether displaced in America by the electric elevator.
The hydraulic elevator just described is virtually a water engine, the ram acting as piston. A veritable engine, of small size, to perform any species of mechanical work, may be constructed on precisely the same principle, the piston in this case acting in a cylinder similar to that of the ordinary steam engine. Such an engine operates slowly but with great power. It has special utility where it is desirable to apply power intermittently, as in various parts of a dockyard, or in handling guns and ammunition on shipboard. In the former case in particular, it is often inconvenient to use steam power, as steam sent from a central boiler condenses in a way to interfere with its operation. In such a case any number of small water-pressure engines may be operated from a single tank where water is at a high elevation, or where the requisite pressure is secured artificially. In the latter case, the water is kept under pressure by a large piston or ram heavily weighted, the entire receptacle being, of course, of water-tight construction and adapted to withstand pressure. The pump that supplies the tank is ordinarily made to work automatically, ceasing operation as soon as the ram rises to the top of the receptacle, and beginning again whenever, through use of water, the ram begins to descend. Such an apparatus is called an accumulator. Such water engines have come into vogue only in comparatively recent times, being suggested by the steam engine. As already pointed out, their utility is restricted, yet the total number of them in actual use to-day is large, and their share in the world's work is not altogether inconsiderable.