69. Fällung des salpetersauren Wismuths durch kohlensaures Ammon (zu §. [96. a.]).
Versetzt man eine Wismuthlösung mit Wasser, dann mit kohlensaurem Ammon und Ammon, und filtrirt ohne zu erwärmen ab, so färbt sich das Filtrat beim Zusatz von Schwefelwasserstoffwasser dunkel schwarzbraun, erhitzt man die trübe Mischung aber vor dem Filtriren eine kurze Zeit bis fast zum Kochen, so wird das Filtrat durch Schwefelwasserstoff nicht mehr oder doch nur so wenig gebräunt, dass man die Farbenveränderung beim Hindurchsehen von oben durch ein ganz mit der Flüssigkeit gefülltes Proberöhrchen kaum mehr wahrnehmen kann. — Die Erscheinung bleibt sich gleich, sowohl, wenn die Wismuthlösung viel, als auch, wenn sie wenig freie Salpetersäure enthält.
70. Bestimmung der Phosphorsäure als pyrophosphorsaure Magnesia (zu §. [106.]).
Zu den folgenden Versuchen wurde ein völlig reines, ganz lufttrockenes, krystallisirtes phosphorsaures Natron angewandt. Der Sicherheit wegen bestimmte ich durch Erhitzen und Glühen seinen Wassergehalt mit grösster Sorgfalt.
1,3123 Substanz hinterliessen 0,4899 Grm. pyrophosphorsaures Natron. — Hieraus ergiebt sich in Procenten 62,67 Wasser. Die Formel 2 NaO, HO, PO5 + 24 aq. erfordert 62,71 Proc.
a. 1,9847 Grm. des lufttrockenen krystallisirten phosphorsauren Natrons wurden in Wasser gelöst und nach §. [106. I. b. α.] mit schwefelsaurer Magnesia unter Zusatz von Salmiak und Ammon gefällt. Der Niederschlag wurde mit ammonhaltigem Wasser vollkommen ausgewaschen. Er lieferte nach dem Glühen und nach Abzug der Filterasche 0,6336 Grm. pyrophosphorsaure Magnesia, entsprechend 0,3945328 Phosphorsäure. Hieraus ergiebt sich in dem krystallisirten phosphorsauren Natron ein Gehalt an Phosphorsäure von 19,87 Procent. Die obige Formel verlangt 19,90, — und corrigirt auf den gefundenen Wassergehalt 19,91.
b. 3,0676 Grm. desselben krystallisirten phosphorsauren Natrons wurden in Wasser gelöst, Salzsäure, dann Eisenchlorid und Alaunlösung zugesetzt, Weinsteinsäure zugefügt und endlich Ammon, bis der am Anfang entstandene Niederschlag wieder völlig gelöst war. Nunmehr wurde mit schwefelsaurer Magnesia gefällt. Der nach 12 Stunden abfiltrirte Niederschlag wurde mit ammonhaltigem Wasser so vollständig ausgewaschen, dass ein Tropfen des zuletzt ablaufenden auf Platinblech nicht den mindesten Rückstand mehr liess. — Ich führe dies absichtlich an, weil es mir trotzdem nicht gelang, den Niederschlag so weiss zu erhalten, als er eigentlich hätte sein müssen. Auch zuletzt zeigte er noch einen schwachen Stich ins Gelbe. Beim Glühen wurde er in der ganzen Masse ein wenig schwärzlich. Er wog nach Abzug von 0,0026 Grm. Filterasche 0,9786 Grm., entsprechend 0,6181 Phosphorsäure = 20,14 Proc., berechnet 19,91. — Die 0,23 Proc., welche ich zu viel erhielt, verdankten ihren Ursprung einer Spur Kohle, sowie einer kleinen Menge Eisenoxyd; erstere schied sich beim Auflösen des Rückstandes in Salzsäure ab, letzteres gab sich in der Lösung durch Schwefelcyankalium deutlich zu erkennen. —
71. Trennung der Magnesia von Natron (zu §. [121. B. 4. a. α.]).
1,1864 Grm. reines geglühtes Chlornatrium und 1,4252 Grm. reine wasserfreie schwefelsaure Magnesia wurden in Wasser gelöst, auf 100° erhitzt und mit Barytwasser im Ueberschuss versetzt. Die von dem entstandenen Niederschlagt abfiltrirte und durch kohlensaures Ammon vom überschüssigen Baryt befreite Flüssigkeit lieferte, mit Schwefelsäure abgedampft, 1,4371 Grm. neutrales schwefelsaures Natron, enthaltend 0,4694 Natrium. — Der durch Barytwasser erhaltene, ausgewaschene Niederschlag wurde mit verdünnter Salzsäure erwärmt, die Lösung von dem ungelöst gebliebenen BaO, SO3 abfiltrirt und unter Zusatz von Schwefelsäure (durch welche ein mässiger Niederschlag von schwefelsaurem Baryt entstand) eingedampft. Der gelinde geglühte Rückstand wog 1,4308 Grm. Derselbe wurde mit Wasser behandelt, der ungelöst bleibende BaO, SO3 abfiltrirt und bestimmt, er wog 0,0889 Grm. Es bleiben somit für MgO,SO3 1,4308 Grm. = 0,48668 MgO.
Zusammenstellung in 100 Theilen der Mischung: