Eudemus von Rhodos10, einer der ältesten Peripatetiker, schrieb eine Geschichte der Mathematik, aus welcher uns durch Proklos Diadochus11, einen Philosophen des fünften nachchristlichen Jahrhunderts, ein Bruchstück erhalten ist, welches sozusagen das einzige Mittel bildet, das uns einen Einblick in die geometrischen Errungenschaften der Griechen in den ersten dritthalb Jahrhunderten nach Thales gewährt. Hierin heisst es unter Anderem: »Thales, der nach Aegypten ging, brachte zuerst die Geometrie nach Hellas hinüber und Vieles entdeckte er selbst, von Vielem aber überlieferte er die Anfänge seinen Nachfolgern; das Eine machte er allgemeiner, das Andere mehr sinnlich fassbar.« Hundert Jahre nach dem Tode des Pythagoras berichtet der Redner Isokrates12: »Man könnte, wenn man nicht eilen wollte, viel Bewunderungswürdiges von der Heiligkeit aegyptischer Priester anführen, welche ich weder allein noch zuerst erkannt habe, sondern viele der jetzt Lebenden und der Früheren, unter denen auch Pythagoras der Samier ist, der nach Aegypten kam und ihr Schüler wurde und die fremde Philosophie zuerst zu den Griechen verpflanzte.«

Während der Aufenthalt des Pythagoras in Aegypten unter Anderen auch noch von Strabon13 und Antiphon14 bestätiget wird, nennt uns Diodor15 eine ganze Reihe von [pg 011] Namen, indem er sagt; »Die aegyptischen Priester nennen unter den Fremden, welche nach den Verzeichnissen in den heiligen Büchern vormals zu ihnen gekommen seien, den Orpheus, Musaios, Melampus und Daidalos, nach diesen den Dichter Homer, den Spartaner Lykurgos, ingleichen den Athener Solon und den Philosophen Platon. Gekommen sei zu ihnen auch der Samier Pythagoras und der Mathematiker Eudoxos, ingleichen Demokritos von Abdera und Oinopides von Chios. Von allen diesen weisen sie noch Spuren auf, von den Einen Bildnisse von den Anderen Orte und Gebäude, die nach ihnen benannt sind. Aus der Vergleichung dessen, was jeder von ihnen in seinem Fache geleistet hat, führen sie den Beweis, dass sie Dasjenige um desswillen sie von den Hellenen bewundert werden, aus Aegypten entlehnt haben.« Aus diesen Stellen geht mit Sicherheit hervor, dass viele Griechen nach Aegypten zogen, um bei den dortigen Priestern Philosophie und Mathematik kennen zu lernen, da wohl in den Berichten nur die hervorragenden Männer angeführt wurden.

Der Milesier Thales, welcher erst in vorgerücktem Alter, und nachdem er als Handelsmann früher gewiss schon mehrmals Aegypten besucht gehabt, sich daselbst behufs seiner Studien zu längerem Aufenthalt niederlies, ist merkwürdiger Weise in dem Berichte des Diodor nicht angeführt, und könnte man wohl aus diesem Umstande umsomehr einen gewissen Grad von Unglaublichkeit ableiten, als darin mythische Namen wie Orpheus, Daidalos und Homer angeführt erscheinen. Diese letzteren konnten jedoch sehr wohl dem im Ganzen und Grossen sonst richtigen Verzeichnisse vom Berichterstatter eigenwillig beigefügt worden sein, um dadurch das hohe Alter aegyptischer Wissenschaft in ein vorteilhaftes Licht zu setzen.

[pg 12]

Abgesehen jedoch von aller Wahrscheinlichkeit oder Unwahrscheinlichkeit für die Exactheit obiger Aussprüche in Bezug auf einzelne Namen, dürfte jedenfalls das als unumstössliche Wahrheit gelten, dass die ägyptischen Priester von den Griechen als in den Wissenschaften, insbesondere in der Geometrie sehr bewandert gehalten wurden, und zwar in einem solchen Maasse, dass eine Reihe hervorragender griechischer Philosophen es nicht verschmähte, die, für damalige Verhältnisse nicht unbedeutende Reise nach Aegypten zu unternehmen, ja oft jahrelang in diesem Lande mit unbekannter Sprache und Schrift zu verweilen, um sich die Kenntnisse der Aegypter anzueignen.

Stellt man nun zunächst die Frage nach Quantität und Qualität des geometrischen Wissens, welches die Griechen von ihren Studienreisen mit nach Hause brachten, so scheint dies, selbst vom Standpunkte der unmittelbar nachpythagoräischen Geometrie, äusserst Weniges gewesen zu sein.

Thales von Milet, einer der sieben griechischen Weltweisen, der Begründer der ionischen Schule, Thales, welcher für das Jahr 585 v. Chr. G. eine, auch eingetroffene Sonnenfinsterniss vorherzusagen wusste, soll, den uns von Proklos zugekommenen Berichten zufolge, in Aegypten nicht viel mehr erfahren haben, als die Sätze über die Gleichheit der Winkel an der Basis eines gleichschenkligen Dreieckes, die Gleichheit der Scheitelwinkel am Durchschnitt zweier Geraden; er wusste ferner, wie ein Dreieck durch eine Seite und die beiden anliegenden Winkel bestimmt erscheint, diese Erörterung zur Messung der Entfernungen von Schiffen auf dem Meere benützend, es war ihm bekannt, dass ein Kreis durch einen Durchmesser halbirt wird,16 und soll er die Höhe der Pyramiden aus der Länge des Schattens gemessen haben, höchst wahrscheinlich in dem Momente, wo die [pg 13] Schattenlänge eines senkrechten Stabes der Stablänge gleich ist,17 möglicherweise jedoch, wie Plutarch18 berichtet, auch zu einer beliebigen Tageszeit. Auch wird ihm von Pamphile19 die Kenntniss des Satzes zugeschrieben, dass der Peripheriewinkel im Halbkreise ein rechter sei. Gewiss hat Thales wenigstens jene geometrischen Fundamente in Aegypten kennen gelernt, welche es ihm ermöglichten, die genannten Sätze als wahr zu erkennen, wenn auch bei ihm, selbst bei diesen einfachen Dingen an einen strengen Beweis nicht gedacht werden kann.

Es wäre jedoch voreilig, aus der Geringfügigkeit der Thaletischen geometrischen Kenntnisse mit Montucla20 zu schliessen, dass auch die Aegypter nicht viel mehr gewusst hätten. Man kann wohl annehmen, dass die aegyptischen Priester bei ihrer den Fremden gegenüber beobachteten Zurückhaltung nur einen Theil ihres Wissens offenbarten; wer könnte jedoch bemessen, in welchem Verhältnisse dieser Theil zu ihrem Gesammtwissen stand? Der Ansicht Montucla's kann man entgegensetzen, dass die Aegypter den Fremden nur einen kleinen Bruchtheil ihres sorgsam im Verborgenen gehüteten Wissens preisgegeben haben mochten, wobei ferner nicht unberücksichtigt bleiben darf, dass den nach Aegypten gekommenen Griechen auch die Unkenntniss der Sprache und der Schrift weitere, nicht zu unterschätzende Schwierigkeiten bereitete, in dem Maasse als vielleicht Manches, was ihnen die aegyptischen Priester von aegyptischem Wissen zur Verfügung stellten, unverstanden bleiben konnte.

Was nun das Wesen aegyptischer Geometrie betrifft, so finden wir in den Berichten der Alten fast gar keine Anhaltspunkte, um uns hierüber Klarheit verschaffen zu können, und war man bis vor Kurzem darauf hingewiesen, aus den [pg 14] Anfängen griechischer Mathematik auf den Stand der aegyptischen zurückzuschliessen, was, wie aus dem Vorhergesagten folgen dürfte, mit nicht geringen Schwierigkeiten verbunden erscheint.

Die Ansicht, dass die Geometrie der Aegypter eigentlich nur constructiver Natur war, ähnlich dem was wir als Reisskunst zu bezeichnen pflegen,21 dürfte sich nicht als stichhältig erweisen; es möge jedoch gleich jetzt darauf hingedeutet werden, dass die Aegypter im Construiren geometrischer Formen nicht unbewandert sein konnten.