Fig. 15.
Allgemein gebrauchen wir [formula] Querschnitte. Es wird, denke ich, mit
Rücksicht auf die folgende Figur verständlich sein, wenn ich bei der
einzelnen Handhabe unserer Normalfläche von einer Meridiancurve und einer
Breitencurve rede:
[Illustration: Fig. 16.]
Fig. 16.
Wir wählen die [formula]_ Querschnitte derart, dass wir um jede der __p__ Handhaben eine Meridiancurve und eine Breitencurve herumlegen._ Wir wollen diese Querschnitte der Reihe nach mit [formula], [formula], [formula], beziehungsweise [formula], [formula], [formula] bezeichnen.
§. 9. Vorläufige Bestimmung stationärer Strömungen auf beliebigen Flächen.
Wir haben uns nun mit der Aufgabe zu beschäftigen, auf beliebigen (geschlossenen) Flächen die allgemeinsten einförmigen, stationären Strömungen mit Geschwindigkeitspotential zu definiren, immer unter der Voraussetzung, dass keine anderen Unendlichkeitspuncte zugelassen werden sollen, als die in §. 2 genannten(13). Zu dem Zwecke richten wir unsere Ideen auf die Normalflächen des vorigen Paragraphen und benutzen übrigens wieder Vorstellungen der Elektricitätslehre. Die gegebene Fläche denken wir uns mit einem unendlich dünnen gleichförmigen Ueberzuge einer leitenden Substanz versehen, und wenden zunächst diejenigen experimentellen Mittel an, die uns von §. 3 her bekannt sind. Wir werden also zuvörderst etwa die beiden Pole einer galvanischen Batterie auf unsere Fläche an zwei beliebigen Stellen aufsetzen: es entsteht dann eine Strömung, welche diese beiden Stellen als Quellenpuncte von entgegengesetzt gleicher Ergiebigkeit besitzt. Wir werden sodann zwei beliebige Puncte der Fläche durch eine oder mehrere, neben einander herlaufende, sich selbst nicht schneidende Curven verbinden, welche der Sitz constanter elektromotorischer Kräfte sein sollen,—wobei man sich alles Dessen erinnern mag, was in §. 4 betreffs der dann nothwendig werdenden experimentellen Anordnung gesagt wurde. Wir erhalten dann eine stationäre Bewegung, für welche die beiden Puncte Wirbelpuncte von entgegengesetzt gleicher Intensität sind.—Wir werden ferner verschiedene solche Bewegungsformen überlagern und endlich, wenn es nöthig scheint, getrennte Unendlichkeitspuncte durch Gränzübergang zu höheren Unendlichkeitspuncten zusammenfallen lassen. Alles das gestaltet sich genau so, wie auf der Kugel, und wir haben also jedenfalls den folgenden Satz:
Wenn man die Art der Unendlichkeitsstellen nach Anleitung des §. 2 beschränkt, wenn man ferner daran festhält, dass die Summe sämmtlicher logarithmischer Residua allemal gleich Null sein muss, so existiren auf unserer Fläche complexe Functionen des Ortes, welche an beliebig gegebenen Stellen in übrigens beliebig gegebener Weise unendlich werden und überall sonst stetig verlaufen.
Mit den so bestimmten Functionen ist nun aber, für [formula], die Sache noch keineswegs erschöpft. Wir können nämlich eine experimentelle Anordnung treffen, für welche auf der Kugel noch keinerlei Möglichkeit gegeben war. Es gibt jetzt auf der Fläche in sich zurücklaufende Curven, vermöge deren die Fläche keineswegs in getrennte Bereiche zerlegt wird. Nichts steht im Wege, dass die Elektricität von der einen Seite einer solchen Curve durch die Fläche hindurch zur anderen Seite derselben hinüberströmt. Wir werden eine solche Curve, oder auch mehrere neben einander herlaufende Curven dieser Art ebensogut als Sitz constanter elektromotorischer Kräfte betrachten können, wie diess in §. 4 mit Curvenzügen geschah, die von einem Endpuncte zu einem zweiten hinlaufen.
Die Strömungen, welche wir dann erhalten, haben überhaupt keine Unstetigkeiten. Wir werden sie als überall endliche Strömungen und die zugehörigen complexen Functionen des Ortes als überall endliche Functionen bezeichnen können. Diese Functionen sind nothwendig unendlich vieldeutig. Denn sie erhalten jeweils einen reellen, der angenommenen elektromotorischen Kraft proportionalen Periodicitätsmodul, so oft man die gegebene Curve in demselben Sinne überschreitet(14)