unter [formula] beliebige constante Coëfficienten verstanden. Um eine eindeutige Function zu haben, setzen wir die Periodicitätsmoduln, welche dieser Ausdruck an den [formula] Querschnitten besitzt, gleich Null. Aber diese Periodicitätsmoduln setzen sich vermöge der [formula] aus den Periodicitätsmoduln der [formula] linear zusammen. Wir finden also [formula] lineare homogene Gleichungen für die [formula]_ Constanten __a__ und __c__._ Wir wollen annehmen, dass diese Gleichungen linear unabhängig sind(21). Dann kommt der wichtige Satz:
_Unter der genannten Voraussetzung giebt es bei __m__ beliebig vorgeschriebenen einfachen algebraischen Unstetigkeitspuncten nur dann eindeutige Functionen des Ortes, wenn [formula] ist, und zwar enthalten diese Functionen [formula] linear vorkommende willkürliche Constante._
Man denke sich jetzt die m Unendlichkeitspuncte als beweglich. So treten m neue Willkürlichkeiten in die Betrachtung ein. Ueberdies ist klar, dass man beliebige m Puncte auf der Fläche durch continuirliche Verschiebung in beliebige m andere verwandeln kann. Wir können also sagen, indem wir uns übrigens immer der Voraussetzung erinnern, die wir gemacht haben:
_Die Gesammtheit der eindeutigen Functionen mit __m__ einfachen algebraischen Unstetigkeitspuncten, die auf gegebener Fläche existiren, bildet ein Continuum von [formula] Abmessungen._
Nun wir die Existenz und die Mannigfaltigkeit der eindeutigen Functionen haben kennen lernen, wollen wir auf möglichst anschauungsmässigem Wege noch eine andere wichtige Eigenschaft derselben entwickeln. Die Zahl m der Unendlichkeitspuncte unserer Function hat nämlich für letztere eine noch viel weiter gehende Bedeutung. Ich sage, dass unsere Function [formula] jeden beliebig vorgegebenen Werth [formula]_ genau an __m__ Stellen annimmt._
Zum Beweise betrachte man den Verlauf der Curven [formula] auf unserer Fläche. Nach §. 2 ist klar, dass jede dieser Curven einen Ast durch jeden der m Unendlichkeitspuncte hindurchschickt. Andererseits folgt aus Betrachtungen, wie wir sie in §. 10 entwickelten, dass jeder Curvenast mindestens einen Unendlichkeitspunct enthalten muss. Hiernach ist für sehr grosse [formula] die Richtigkeit unserer Behauptung unmittelbar klar. Denn die betreffenden Curven [formula] gehen dann in der Nähe des einzelnen Unendlichkeitspunctes nach §. 2 in kleine durch den Unendlichkeitspunct hindurchlaufende Kreise über, welche nothwendig neben dem (hier nicht weiter in Betracht kommenden) Unstetigkeitspuncte noch je einen Schnittpunct gemein haben:
[Illustration: Fig. 33.]
Fig. 33.
Hieraus aber folgt die Sache allgemein. Denn die Curven [formula], [formula] können bei continuirlicher Aenderung von [formula], [formula] niemals einen Schnittpunct verlieren. Es könnte diess nämlich nach dem Gesagten nur so geschehen, dass mehrere Schnittpuncte zusammenrückten, um dann in geringerer Zahl wieder aus einander zu treten. Nun bilden die Curven [formula] ein Orthogonalsystem. Ein Zusammenrücken reeller Schnittpuncte ist also nur in den Kreuzungspuncten möglich (in denen es auch wirklich geschieht). Die Kreuzungspuncte aber sind nur in endlicher Zahl vorhanden, und also nicht im Stande, die Fläche in verschiedene Gebiete zu zerlegen. Die Eventualität des Zusammenrückens ist also überhaupt nicht in Betracht zu ziehen, und somit unsere Behauptung bewiesen.
Es ist übrigens für das Folgende nützlich, sich die Vertheilung der Werthe von [formula] in der Nähe eines Kreuzungspunctes deutlich zu machen. Hierzu genügt eine aufmerksame Beobachtung der oben gegebenen Figur 1. Man erkennt zumal, dass von den m beweglichen Schnittpuncten der Curven [formula], [formula] bei Annäherung an den [formula]-fachen Kreuzungspunct [formula] zusammenrücken.—