Fig. 37.

wobei ich mir (wie es in der Figur angedeutet ist) die beiden Halbblätter, welche die positive Halbebene überlagern, schraffirt denken will. Dabei sollen die Verzweigungsschnitte mit den geradlinigen Strecken zwischen [formula] und [formula] einerseits, und [formula] und [formula] andererseits zusammenfallen.

Diese zweiblättrige Fläche repräsentirt, wie man weiss, die Verzweigung von [formula], und zwar können wir, in Anbetracht der Wahl der Verzweigungsschnitte, die Zuordnung so treffen, dass auf dem oberen Blatte w durchweg einen positiven reellen Theil besitzt. Wir betrachten nun das Integral

[formula]

Dasselbe liefert uns in bekannter Weise die Abbildung unserer zweiblättrigen Fläche ebenfalls auf ein Rechteck, dessen nähere Beziehung zur zweiblättrigen Fläche durch folgende Figur gegeben ist, auf welcher man die Schraffirungen und sonstigen Unterscheidungen der Figur (37) wiederfindet:

[Illustration: Fig. 38.]

Fig. 38.

Dem oberen Blatte von Figur (37) entspricht die linke Seite dieser Figur. Man beachte vor Allem, wie sich die Abbildung für die Umgebung der Verzweigungspuncte der zweiblättrigen Fläche gestaltet. Vielleicht ist es am einfachsten, die Sache sich so vorzustellen, dass man von (37) zunächst durch stereographische Projection zu einer zweimal überdeckten Kugelfläche übergeht, welche auf einem Meridian vier Verzweigungspuncte trägt,—dass man die so erhaltene Fläche durch einen längs des Meridians verlaufenden Schnitt in vier Halbkugeln zerlegt, deren einzelne man durch geeignete Dehnung und Deformirung in der Nähe der vier Verzweigungspuncte in ein ebenes Rechteck verwandelt,—dass man endlich die so entstehenden vier Rechtecke entsprechend den Beziehungen zwischen den vier Halbkugeln nach Art von Figur (38) neben einander legt. Man sieht auf diese Art auch deutlich, dass in Figur (38) immer zwei (zusammengehörige) Randpuncte denselben Punct der ursprünglichen Fläche bezeichnen.

Um nun zwischen dem Ringe und der zweiblättrigen Fläche die gewünschte Beziehung zu erzielen, haben wir nur dafür zu sorgen, dass das Rechteck der Figur (38) durch passende Wahl des Moduls [formula] mit dem Rechtecke der Figur (35) ähnlich wird. Eine proportionale Vergrösserung des einen Rechtecks (welches auch eine conforme Umgestaltung ist) bringt dasselbe sodann mit dem anderen Rechteck zur Deckung und vermittelt so eine eindeutig-conforme Abbildung der zweiblättrigen Fläche auf die Ringfläche (oder der letzteren auf die erstere). Es wird wiederum genügen, das Sachverhältniss durch eine Figur zu kennzeichnen, dieselbe entspricht genau der eben gegebenen Figur (36):

[Illustration: Fig. 39.]