Dann aber ist von selbst eine grosse Verallgemeinerung der ursprünglichen Auffassung gegeben. Bislang galten uns zwei Flächen nur dann als gleichwerthig, wenn die eine aus der anderen durch eindeutige conforme Abbildung entstand. Jetzt ist kein Grund mehr, an der Conformität der Abbildung festzuhalten. _Jede Fläche, welche durch stetige Abbildung eindeutig__ in die gegebene verwandelt werden kann, überhaupt jedes geometrische Gebilde, dessen Elemente sich stetig eindeutig auf die ursprüngliche Fläche beziehen lassen, kann ebensowohl zur Versinnlichung der in Betracht zu ziehenden Functionen gebraucht werden._ Ich habe diesem Gedanken, wie ich bei gegenwärtiger Gelegenheit ausführen möchte, in früheren Arbeiten nach zwei Richtungen hin Ausdruck gegeben.
Einmal operirte ich mit dem Begriffe einer möglichst übersichtlichen, übrigens verschiedentlich modificirbaren Normalfläche (vergl. §. 8), auf welcher ich den Verlauf der in Betracht kommenden Functionen durch verschiedene graphische Hülfsmittel zu illustriren bemüht war(32). Hierher gehören auch die Polygonnetze, deren ich mich wiederholt bediente(33), indem ich mir die Riemann’sche Fläche in geeigneter Weise zerschnitten und dann in die Ebene ausgebreitet dachte. Es bleibe dabei an dieser Stelle unerörtert, ob nicht den so entstehenden Figuren, die zunächst beliebig stetig verändert werden dürfen, im Interesse weitergehender functionentheoretischer Untersuchungen hinterher doch eine gesetzmässige Gestalt ertheilt werden soll, vermöge deren sich eine Definition der durch die Figur zu veranschaulichenden Functionen ermöglicht.
Das andere Mal(34) stellte ich mir die Aufgabe, in möglichst anschaulicher Weise den Zusammenhang darzulegen zwischen der Auffassungsweise der Functionentheorie und derjenigen der gewöhnlichen analytischen Geometrie, welch’ letztere eine Gleichung zwischen zwei Variabelen als Curve deutet. Indem ich von dem Satze ausging, dass jede imaginäre Gerade der Ebene und also auch jede imaginäre Tangente einer Curve einen und nur einen reellen Punct besitzt, erhielt ich eine Riemann’sche Fläche, die sich an den Verlauf der gegebenen Curve auf das Innigste anschmiegt. Ich habe diese Fläche, wie es mein ursprünglicher Zweck war, bisher nur zur Veranschaulichung gewisser einfacher Integrale gebraucht(35). Aber es findet eine ähnliche Bemerkung ihre Stelle, wie oben bei den Polygonnetzen. Insofern die Fläche gesetzmässig ist, muss auch sie zur Definition der auf ihr existirenden Functionen dienen können. In der That kann man für diese Functionen eine partielle Differentialgleichung bilden, welche den Differentialgleichungen zweiter Ordnung, die wir in §§. 1 und 5 betrachten, in etwa analog ist: nur dass der Differentialausdruck, an den diese Gleichung anknüpft, nicht unmittelbar als Bogenelement einer Fläche zu deuten ist.—
Diese wenigen Bemerkungen müssen genügen, um auf Betrachtungen hinzuweisen, deren Verfolg mir interessant scheint.
ABSCHNITT III. - FOLGERUNGEN.
§. 19. Ueber die Moduln algebraischer Gleichungen.
Es gibt einen wichtigen Punct, in welchem die Riemann’sche Theorie der algebraischen Functionen nicht nur der Methode sondern auch dem Resultate nach über die sonst üblichen Darstellungen dieser Theorie hinausgreift. Sie besagt nämlich _dass zu jeder über der __z__-Ebene ausgebreiteten, graphisch gegebenen mehrblättrigen Fläche zugehörige algebraische Functionen construirt werden können_,—wobei man beachten mag, dass diese Functionen, sofern sie überhaupt existiren, in hohem Maasse willkürlich sind, da [formula] im Allgemeinen gerade so verzweigt ist, wie w.—Der genannte Satz ist um so merkwürdiger, als er eine Angabe über eine interessante Gleichung höheren Grades implicirt. Sind nämlich die Verzweigungspuncte einer m-blättrigen Fläche gegeben, so existiren noch eine endliche Zahl von wesentlich verschiedenen Möglichkeiten, dieselben in die m-Blätter einzuordnen: man wird diese Zahl durch Betrachtungen auffinden können, die der reinen Analysis situs angehören(36). Aber dieselbe Zahl hat unserem Satze zufolge ihre algebraische Bedeutung. Man bezeichne, wie es Riemann thut, alle solche algebraischen Functionen von z als derselben Classe angehörig, die sich, unter Benutzung von z, rational durch einander ausdrücken lassen. Dann ist unsere(37)_ Zahl die Anzahl der verschiedenen__ Classen algebraischer Functionen, welche in Bezug auf __z__ die gegebenen Verzweigungswerthe besitzen._
Ich wünsche im gegenwärtigen und im folgenden Paragraphen verschiedene Folgerungen zu ziehen, die sich aus dem vorausgeschickten Satze gewinnen lassen, und zwar mag zunächst die Frage nach den Moduln der algebraischen Functionen behandelt werden, d. h. die Frage nach denjenigen Constanten, welche bei eindeutiger Transformation der Gleichungen [formula] die Rolle der Invarianten spielen.
Sei zu diesem Zwecke [formula] eine zunächst unbekannte Zahl, welche angibt, wie vielfach unendlich oft eine Fläche sich eindeutig in sich transformiren, d. h. conform auf sich selber abbilden lässt. Sodann erinnere man sich an die Anzahl der Constanten in den eindeutigen Functionen auf gegebener Fläche (§. 13). Es gab im Allgemeinen [formula] eindeutige Functionen mit m Unendlichkeitspuncten, und diese Zahl war jedenfalls genau richtig (wie ohne Beweis angegeben wurde), wenn [formula] war. Nun bildet jede dieser Functionen die gegebene Fläche auf eine m-blättrige Fläche über der Ebene eindeutig ab. _Daher ist die Gesammtheit der __m__-blättrigen Flächen, auf welche man eine gegebene Fläche conform eindeutig beziehen kann, und also auch der __m__-blättrigen Flächen, die man einer Gleichung [formula] durch eindeutige Transformation zuordnen kann, [formula] fach._ Denn jedesmal [formula] Abbildungen ergeben dieselbe m-blättrige Fläche, weil jede Fläche der Voraussetzung nach [formula] mal auf sich selber abgebildet werden kann.
Nun gibt es aber überhaupt [formula] m-blättrige Flächen, unter w die Zahl der Verzweigungspuncte, d. h. [formula] verstanden. Denn durch die Verzweigungspuncte wird die Fläche, wie oben bemerkt, endlich-deutig bestimmt, und Verzweigungspunkte höherer Multiplicität entstehen durch Zusammenrücken einfacher Verzweigungspuncte, wie dieses betreffs der entsprechenden Kreuzungspuncte bereits in §. 1 erläutert wurde (vergl. Figur (2) und (3) daselbst). Zu jeder dieser Flächen gehören, wie wir wissen, algebraische Functionen. Die Anzahl der Moduln ist daher [formula].