unterwirft, wo die Verhältnissgrössen [formula] reell sind. In dem zweiten Falle [formula] ist die Sache etwas complicirter. Auch bei ihm sind lineare Transformationen mit drei reellen Parametern möglich. Dieselben nehmen aber für das oben eingeführte z die folgende Gestalt an:

[formula]

wo [formula] die drei reellen Parameter vorstellen. Dieses Resultat ist implicite in den Untersuchungen enthalten, die sich auf die analytische Repräsentation der Drehungen der [formula]-Kugel um ihren Mittelpunct beziehen.(46)

§ 22. Conforme Abbildung verschiedener Flächen auf einander.

Wenn es sich jetzt darum handelt, verschiedene geschlossene Flächen auf einander abzubilden, so liefern die vorausgeschickten Untersuchungen über die conforme Abbildung geschlossener Flächen auf sich selbst die nöthigen Nebenbestimmungen, welche angeben, wie oft sich eine solche Abbildung gestaltet, sofern eine solche überhaupt möglich ist. Flächen, welche sich conform aufeinander abbilden lassen, besitzen jedenfalls (wie schon hervorgehoben) übereinstimmende Transformationen in sich selbst. Man erhält also alle Abbildungen der einen Fläche auf die zweite, wenn man eine beliebige Abbildung mit allen solchen verbindet, welche eine der beiden Flächen in sich selbst überführen. Ich werde hierauf nicht weiter zurückkommen.

Betrachten wir nun zuvörderst allgemeine, d. h. nicht symmetrische Flächen. Dann treten die Abzählungen des §. 19 betreffs der Moduln algebraischer Gleichungen unmittelbar in Geltung. Wir haben zunächst:

Flächen [formula] lassen sich immer conform auf einander abbilden; und finden übrigens, dass die Flächen [formula] einen, die Flächen [formula] [formula] bei conformer Abbildung unzerstörbare Moduln besitzen. Jeder solche Modul ist im Allgemeinen eine complexe Constante. Dem Umstande entsprechend, dass bei symmetrischen Flächen reelle Parameter in Betracht gezogen werden müssen, wollen wir ihn in seinen reellen und seinen imaginären Bestandtheil zerlegt denken. Dann haben wir:

Sollen zwei Flächen [formula] auf einander abbildbar sein, so sind im Falle [formula] zwei, im Falle [formula] [formula] Gleichungen zwischen den reellen Constanten der Flächen zu erfüllen.

Indem wir uns jetzt zu den symmetrischen Flächen wenden, haben wir noch eine kleine Zwischenbetrachtung zu machen. Zunächst ist ersichtlich, dass zwei solche Flächen nur dann "symmetrisch’’ auf einander bezogen werden können, wenn sie neben dem gleichen p dieselbe Zahl [formula] der Uebergangscurven darbieten und überdiess beide entweder der ersten oder der zweiten Art angehören. Im Uebrigen wiederhole man speciell für die symmetrischen Flächen die Abzählungen des §. 13 betreffs der Zahl der in eindeutigen Functionen enthaltenen Constanten unter der Bedingung, dass nur solche Functionen in Betracht gezogen werden, welche an symmetrischen Stellen conjugirt imaginäre Werthe aufweisen. Hiermit combinire man sodann nach dem Muster des §. 19 die Zahl solcher über der Z-Ebene construirbarer mehrblättriger Flächen, welche in Bezug auf die Axe der reellen Zahlen symmetrisch sind. Ich will dabei, um das Auftreten unendlich vieler Transformationen in sich zu vermeiden, zuvörderst annehmen, dass [formula] sei. Die Sache ist dann so einfach, dass ich sie nicht speciell durchzuführen brauche. Der Unterschied ist nur, dass die in Betracht kommenden, früher unbeschränkten Constanten nunmehr gezwungen sind, entweder einzeln reell oder paarweise conjugirt complex zu sein. In Folge dessen reduciren sich alle Willkürlichkeiten auf die Hälfte. Wir mögen folgendermassen sagen:

Zur Abbildbarkeit zweier symmetrischer Flächen [formula] auf einander ist neben der Uebereinstimmung in den Attributen das Bestehen von [formula] Gleichungen zwischen den reellen Constanten der Fläche erforderlich.