Es kann die Bemerkung vorangeschickt werden, daß man es der Methode des Differentialkalkuls wohl sogleich ansieht, daß sie nicht für sich selbst erfunden und aufgestellt worden ist; sie ist nicht nur nicht für sich begründet, als eine andere Weise analytischen Verfahrens, sondern die Gewaltsamkeit, Glieder, die sich aus Entwickelung einer Funktion ergeben, indem doch das Ganze dieser Entwickelung vollständig zur Sache zu gehören angenommen ist,—weil die Sache als der Unterschied

der entwickelten Funktion einer veränderlichen Größe, nachdem dieser die Gestalt eines Binomiums gegeben worden, von der ursprünglichen, angesehen wird,—geradezu wegzulassen, widerspricht vielmehr durchaus allen mathematischen Grundsätzen. Das Bedürfniß solcher Verfahrungsweise, wie die ihr an ihr selbst mangelnde Berechtigung, weist sogleich darauf hin, daß anderswo der Ursprung und die Grundlage sich befinden müsse. Es geschieht auch sonst in den Wissenschaften, daß das, was als das Elementarische vornehin gestellt ist und woraus die Sätze der Wissenschaft abgeleitet werden sollen, nicht einleuchtend ist, und daß es sich ausweist, vielmehr in dem Nachfolgenden seine Veranlassung und seine Begründung zu haben. Der Hergang in der Geschichte des Differential-Kalkuls thut dar, daß er in den verschiedenen sogenannten Tangential-Methoden vornehmlich, die Sache gleichsam als in Kunststücken, den Anfang genommen hat; die Art des Verfahrens, nachdem es auch auf weitere Gegenstande ausgedehnt worden, ist spater zum Bewußtseyn und in abstrakte Formeln gebracht worden, welche nun auch zu Principien zu erheben versucht wurde.

Als die Begriffsbestimmtheit des sogenannten Unendlich-Kleinen ist die qualitative Quantitäts-Bestimmtheit solcher, die zunächst als Quanta im Verhältniß zu einander gesetzt sind, aufgezeigt worden, woran sich die empirische Untersuchung knüpfte, jene Begriffs-Bestimmtheit in den Beschreibungen oder Definitionen nachzuweisen, die sich von dem Unendlich-Kleinen, insofern es als unendliche Differenz und dergleichen genommen ist, vorfinden.—Dieß ist nur im Interesse der abstrakten Begriffsbestimmtheit als solcher geschehen; die weitere Frage wäre, wie von ihr der Übergang zur mathematischen Gestaltung und Anwendung beschaffen wäre. Zu dem Ende ist zuerst das Theoretische, die Begriffsbestimmtheit, noch weiter vorzunehmen, welche sich an ihr selbst nicht ganz unfruchtbar zeigen wird; alsdenn ist das Verhältniß derselben zur Anwendung zu betrachten, und bei beidem nachzuweisen, so weit es hier angeht, daß die allgeineinen Folgerungen zugleich demjenigen, um was es in der Differentialrechnung zu thun ist, und der Art, wie sie es bewerkstelligt, angemessen sind.

Zunächst ist daran zu erinnern, daß die Form, welche die in Rede stehende Begriffsbestimmtheit im Mathematischen hat, bereits beiläufig angegeben ist. Die qualitative Bestimmtheit des Quantitativen ist zuerst im quantitativen Verhältniß überhaupt aufgewiesen, es ist aber auch schon bei der Nachweisung der unterschiedenen sogenannten Rechnungsarten (s. d. betreff. Anm.) anticipirt worden, daß das nachher an seiner eigenthümlichen Stelle noch zu betrachtende Potenzenverhältniß es ist, worin die Zahl durch Gleichsetzung ihrer Begriffsmomente, der Einheit und der Anzahl als zu sich selbst zurückgekehrte gesetzt ist, und damit das Moment der Unendlichkeit, des Fürsichseyns, d. i. des Bestimmtseyns durch sich selbst, an ihr erhält. Die ausdrückliche qualitative Größenbestimmtheit bezieht sich somit, wie gleichfalls schon erinnert, wesentlich auf Potenzenbestimmungen, und da die Differentialrechnung das Specifische hat, mit qualitativen Größenformen zu operiren, so muß ihr eigenthümlicher mathematischer Gegenstand die Behandlung von Potenzenformen seyn, und die sämmtlichen Aufgaben und deren Auflösungen, zu deren Behuf die Differentialrechnung gebraucht wird, zeigen es, daß das Interesse allein in der Behandlung von Potenzenbestimmungen als solchen liegt.

So wichtig diese Grundlage ist, und sogleich an die Spitze etwas Bestimmtes stellt, statt der bloß formellen Kategorien von veränderlichen, kontinuirlichen oder unendlichen Größen und dergleichen, oder auch nur von Funktionen uberhaupt, so ist sie noch zu allgemein; andere Operationen haben gleichfalls damit zu thun; schon das Erheben in die Potenz und Wurzelausziehen, dann die Behandlung der Exponentialgrößen und Logarithmen, Reihen, die Gleichungen höherer Ordnungen haben ihr Interesse und ihre Bemühung allein mit Verhältnissen, die auf Potenzen beruhen. Ohne Zweifel müssen sie zusammen ein System der Potenzenbehandlung ausmachen; aber welches unter den verschiedenen Verhältnissen, worein Potenzenbestimmungen gesetzt werden können, dasjenige sey, das der eigentliche Gegenstand und das Interesse für die Differentialrechnung ist, dieß ist aus dieser selbst, d. i. aus den sogenannten Anwendungen derselben zu entnehmen. Diese sind in der That die Sache selbst, das wirkliche Verfahren in der mathematischen Auflösung eines gewissen Kreises von Problemen; dieß Verfahren ist früher gewesen, als die Theorie oder der allgemeine Theil, und Anwendung ist dasselbe später genannt worden nur in Beziehung auf die nachher erschaffene Theorie, welche die allgemeine Methode des Verfahrens Theils aufstellen, Theils ihr aber Principien, d. i. Rechtfertigung geben wollte. Welche vergebliche Bemühung es gewesen ist, für die bisherige Auffassungsweise des Verfahrens Principien aufzufinden, welche den Widerspruch, der dabei zum Vorschein kommt, wirklich lösten, statt ihn nur durch die Unbedeutenheit des nach dem mathematischen Verfahren nothwendigen hier aber wegzulassenden, oder durch die auf dasselbe hinauslaufende Möglichkeit der unendlichen oder beliebigen Annäherung und dergleichen zu entschuldigen oder zu verstecken, ist in voriger Anmerkung gezeigt worden. Wenn aus dem wirklichen Theile der Mathematik, der die Differentialrechnung genannt wird, das Allgemeine des Verfahrens anders abstrahirt würde, als bisher geschehen ist, so würden sich jene Principien und die Bemühung mit denselben auch als entbehrlich zeigen, wie sie an ihnen selbst sich als etwas Schiefes und im Widerspruche Bleibendes ausweisen.

Wenn wir diesem Eigenthümlichen durch einfaches Aufnehmen des in diesem Theile der Mathematik Vorhandenen nachforschen, so finden wir als Gegenstand à) Gleichungen, in welchen eine beliebige Anzahl von Größen (wir können hier überhaupt bei zwei stehen bleiben) zu einem Ganzen der Bestimmtheit so verbunden sind, daß diese erstens ihre Bestimmtheit in empirischen Größen, als festen Grenzen und dann in der Art der Verbindung mit denselben, so wie ihrer Verbindung untereinander, haben; wie dieß überhaupt in einer Gleichung der Fall ist; indem aber nur Eine Gleichung für beide Größen (und ebenso relativ wohl mehrere Gleichungen für mehrere Größen, aber immer weniger, als die Anzahl der Größen ist—) vorhanden ist, gehören diese Gleichungen zu den unbestimmten; und daß zweitens eine Seite, wie diese Größen hier ihre Bestimmtheit haben, darin liegt, daß sie (wenigstens eine derselben) in einer höhern, als die erste Potenz, in der Gleichung vorhanden sind.

Hierüber sind zunächst einige Bemerkungen zu machen, für's Erste, daß die Größen nach der ersten der angegebenen Bestimmungen ganz nur den Charakter solcher veränderlichen Größen haben, wie sie in den Aufgaben der unbestimmten Analysis vorkommen. Ihr Werth ist unbestimmt, aber so daß wenn anderswoher ein vollkommen bestimmter Werth, d. i. ein Zahlenwerth für die eine kommt, auch die andere bestimmt, so die eine, eine Funktion der andern, ist. Die Kategorien von veränderlichen Größen, Funktionen und dergleichen sind darum für die specifische Größebestimmtheit, die hier in Rede steht, nur formell, wie vorhin gesagt worden ist, weil sie von einer Allgemeinheit sind, in welcher dasjenige Specifische, worauf das ganze Interesse des Differentialkalkuls geht, noch nicht enthalten ist, noch daraus durch Analyse explicirt werden kann; sie sind für sich einfache, unbedeutende, leichte Bestimmungen, die nur erst schwierig gemacht werden, insofern das in sie gelegt werden soll, damit es dann aus ihnen abgeleitet werden könne, was nicht in ihnen liegt, nämlich die specifische Bestimmung der Differentialrechnung. —Was alsdenn die sogenannte Konstante betrifft, so kann über sie bemerkt werden, daß sie zunächst als eine gleichgültige empirische Größe ist, bestimmend für die veränderlichen Größen bloß in Ansehung ihres empirischen Quantums, als Grenze ihres Minimums und Maximums; die Art der Verbindung aber der Konstanten mit den veränderlichen Größen ist selbst eines der Momente für die Natur der besonderen Funktion, welche diese Größen sind. Umgekehrt sind aber auch die Konstanten selbst Funktionen; insofern z.B. eine gerade Linie den Sinn hat, Parameter einer Parabel zu seyn, so ist dieser ihr Sinn dieß, daß sie die Funktion y[hoch 2]/x ist; wie in der Entwickelung des Binomiums überhaupt, die Konstante, welche der Koefficient des ersten Entwickelungsgliedes ist, die Summe der Wurzeln, der des zweiten, die Summe der Produkte derselben zu zwei und zwei u.s.f. also diese Konstanten hier überhaupt Funktionen der Wurzeln sind; wo in der Integralrechnung die Konstante aus der gegebenen Formel bestimmt wird, wird sie insofern als eine Funktion von dieser behandelt. Jene Koefficienten werden wir dann weiter in einer anderen Bestimmung als Funktionen betrachten, deren Bedeutung im Konkreten es ist, worauf das ganze Interesse geht.

Das Eigenthümliche nun aber, wodurch die Betrachtung der veränderlichen Größen sich in der Differentialrechnung von ihrer Beschaffenheit in den unbestimmten Aufgaben unterscheidet, ist in das Angegebene zu setzen, daß wenigstens eine jener Größen oder auch alle sich in einer höhern Potenz als die erste befinde, wobei wieder gleichgültig ist, ob sämmtliche von derselben höhern oder von ungleichen Potenzen sind; ihre specifische Unbestimmtheit, die sie hier haben, liegt allein darin, daß sie in solchem Potenzenverhältnisse Funktionen von einander sind. Dadurch ist die Veränderung der veränderlichen Größen qualitativ determinirt, damit kontinuirlich, und diese Kontinuität, die für sich wieder nur die formelle Kategorie überhaupt einer Identität, einer sich in der Veränderung erhaltenden, gleichbleibenden Bestimmtheit ist, hat hier ihren determinirten Sinn und zwar allein in dem Potenzenverhältnisse, als welches kein Quantum zu seinem Exponenten hat, und die nicht quantitative, bleibende Bestimmtheit des Verhältnisses der veränderlichen Größen ausmacht. Daher ist gegen einen andern Formalismus die Bemerkung zu machen, daß die erste Potenz nur Potenz im Verhältniß zu höhern ist; für sich ist x nur irgend ein unbestimmtes Quantum. So hat es keinen Sinn, für sich die Gleichungen y = ax + b, der geraden Linie oder s = ct die der schlechtgleichförmigen Geschwindigkeit zu differentiren; wenn aus y = ax, oder auch aus y = ax + b, a = dy/dx, oder ds/dt = c aus s = ct wird, so ist ebenso sehr a = y/x, die Bestimmung der Tangente oder s/t = c. die der schlechten Geschwindigkeit. Letztere wird als dy/dx exponirt im Zusammenhange dessen, was für die Entwickelung der gleichförmig beschleunigten Bewegung ausgegeben wird; aber daß ein Moment von einfacher, schlechtgleichförmiger, d. i. nicht durch die höhere Potenz eines der Momente der Bewegung bestimmter Geschwindigkeit, im Systeme solcher Bewegung vorkomme, ist, wie früher bemerkt, selbst eine leere, allein in der Routine der Methode gegründete Annahme. Indem die Methode von der Vorstellung des Zuwachses, den die veränderliche Größe erleiden solle, ausgeht, so kann Freilich auch eine solche, die nur eine Funktion von erster Potenz ist, auch einen Zuwachs erleiden; wenn nun hierauf, um das Differential zu finden, der Unterschied der hierdurch entstandenen zweiten Gleichung von der gegebenen genommen werden soll, so zeigt sich das Leere der Operation, daß, wie bemerkt, die Gleichung vor und nach derselben, für die sogenannten Zuwächse dieselbe ist als für die veränderlichen Größen selbst.

ß) Durch das Gesagte ist die Natur der zu behandelnden Gleichung bestimmt, und es ist nun anzugeben, auf welches Interesse sich die Behandlung derselben gerichtet findet. Diese Betrachtung kann nur bekannte Resultate, wie sie der Form nach in der Lagrange'schen Auffassung insbesondere vorhanden sind, geben; aber ich habe die Exposition so ganz elementarisch angestellt, um die damit vermischten heterogenen Bestimmungen zu entfernen.—Als die Grundlage der Behandlung der Gleichung von angegebener Art zeigt sich, daß die Potenz innerhalb ihrer selbst als ein Verhältniß, als ein System von Verhältnißbestimmungen, gefaßt wird. Die Potenz ist oben als die Zahl angegeben worden, insofern sie dazu gekommen ist, daß ihre Veränderung durch sie selbst bestimmt, ihre Momente, Einheit und Anzahl identisch ist, wie früher nachgewiesen, vollkommen zunächst im Quadrat, formeller, was hier keinen Unterschied macht, in den höhern Potenzen. Die Potenz nun, da sie als Zahl—wenn man den Ausdruck Größe als den allgemeinern vorzieht, so ist sie an sich immer die Zahl,—eine Menge ist, auch als Summe dargestellt, kann zunächst innerhalb ihrer in eine beliebige Menge von Zahlen zerlegt werden, die ohne alle weitere Bestimmung gegen einander und gegen ihre Summe sind, als nur daß sie zusammen dieser gleich sind. Aber die Potenz kann auch in eine Summe von solchen Unterschieden discernirt werden, die durch die Form der Potenz bestimmt sind. Wird die Potenz als Summe genommen, so ist auch die Grundzahl derselben, die Wurzel als Summe gefaßt, und beliebig nach mannigfaltiger Zerlegung, welche Mannigfaltigkeit aber das gleichgültige empirisch-Quantitative ist. Die Summe als welche die Wurzel seyn soll, auf ihre einfache Bestimmtheit, d. i. ihre wahrhafte Allgemeinheit zurückgeführt, ist das Binomium; alle weitere Vermehrung der Glieder ist eine bloße Wiederholung derselben Bestimmung und daher etwas Leeres.[[12]] Worauf es ankommt, ist allein die, hiermit qualitative Bestimmtheit der Glieder, welche sich durch die Potenzirung der als Summe angenommenen Wurzel ergiebt, welche Bestimmtheit allein in der Veränderung, die das Potenziren ist, liegt. Diese Glieder sind somit ganz Funktionen der Potenzirung und der Potenz. Jene Darstellung nun der Zahl, als Summe einer Menge von solchen Gliedern, welche Funktionen der Potenzirung sind, alsdenn das Interesse, die Form solcher Funktionen, und ferner diese Summe aus der Menge solcher Glieder, zu finden, insofern dieses Finden allein von jener Form abhängen muß,—dieß macht bekanntlich die besondere Lehre von den Reihen aus. Aber hierbei haben wir wesentlich das fernere Interesse zu unterscheiden, nämlich das Verhältniß der zu Grunde liegenden Größe selbst, deren Bestimmtheit, insofern sie ein Komplex d. i. hier eine Gleichung, ist, eine Potenz in sich schließt, —zu den Funktionen ihrer Potenzirung. Dieß Verhältniß, ganz abstrahirt von dem vorhin genannten Interesse der Summe wird sich als der Gesichtspunkt zeigen, der sich als der einzige, den die Differentialrechnung sich vorsetzt, aus der wirklichen Wissenschaft ergiebt.

[12] Es gehört nur zum Formalismus derjenigen Allgemeinheit, auf welche die Analysis nothwendigen Anspruch macht, wenn statt (a + b)[hoch n] für die Potenzenentwicklung zu nehmen, (a + b + c + d…)[hoch n] gesagt wird, wie dieß auch in vielen andern Fällen gethan wird; es ist solche Form, so zu sagen, nur für eine Koketterie des Scheins der Allgemeinheit zu halten; in dem Binomium ist die Sache erschöpft; es wird durch dessen Entwickelung das Gesetz gefunden, und das Gesetz ist die wahrhafte Allgemeinheit, nicht die äußerliche nur leere Wiederholung des Gesetzes, welche allein es ist, die durch jenes a + b + c + d… hervorgebracht wird.