Es ist jedoch vorher noch eine Bestimmung zu dem Gesagten hinzuzufügen, oder vielmehr eine, die darin liegt, zu entfernen. Es wurde nämlich gesagt, daß die veränderliche Größe, in deren Bestimmung die Potenz eintritt, angesehen werde, innerhalb ihrer selbst als Summe und zwar als ein System von Gliedern, insofern diese Funktionen der Potenzirung sind, womit auch die Wurzel als eine Summe, und in der einfach bestimmten Form als Binomium betrachtet werde; x[hoch n] = (y + z)[hoch n] = (y + ny[hoch n-1] z +….) Diese Darstellung ging für die Entwickelung der Potenz, d. i. für das Erlangen ihrer Potenzirungsfunktionen, von der Summe als solcher aus; es ist jedoch hier nicht um eine Summe als solche noch um die daraus entspringende Reihe zu thun, sondern von der Summe ist nur die Beziehung aufzunehmen. Die Beziehung als solche der Größen ist das was einer Seits übrig bleibt, nachdem von dem plus einer Summa als solcher abstrahirt wird, und was anderer Seits für das Finden der EntwicklungsFunktionen der Potenz erforderlich ist. Solche Beziehung aber ist schon darin bestimmt, daß hier der Gegenstand eine Gleichung, y[hoch m] = ax[hoch n] auch schon ein Komplex von mehrern (veränderlichen) Größen ist, der eine Potenzenbestimmung derselben enthält. In diesem Komplex ist jede dieser Größen schlechthin als in der Beziehung auf die andere mit der Bedeutung, könnte man sagen, eines plus an ihr selbst,—als Funktion der andern Größen gesetzt; ihr Charakter, Funktionen von einander zu seyn, giebt ihnen diese Bestimmung des plus, eben damit aber eines ganz unbestimmten, nicht eines Zuwachses, Inkrements und dergleichen. Doch diesen abstrakten Gesichtspunkt konnten wir auch auf der Seite lassen; es kann ganz einfach dabei stehen geblieben werden, daß nachdem die veränderlichen Größen in der Gleichung als Funktionen von einander, so daß diese Bestimmtheit ein Verhältniß von Potenzen enthält, gegeben sind, nun auch die Funktionen der Potenzirung einer jeden mit einander verglichen werden,—welche zweiten Funktionen durch gar nichts Anderes weiter als durch die Potenzirung selbst bestimmt sind. Es kann zunächst für ein Belieben oder eine Möglichkeit ausgegeben werden, eine Gleichung von den Potenzen ihrer veränderlichen Größen auf ein Verhältniß ihrer Entwickelungsfunktionen zu setzen; ein weiterer Zweck, Nutzen, Gebrauch hat erst das Dienliche solcher Umgestaltung davon anzugeben; durch ihre Nützlichkeit allein ist jene Umstellung veranlaßt worden. Wenn vorhin von der Darstellung dieser Potenzirungsbestimungen an einer Größe, die als Summe in sich different genommen werde, ausgegangen worden, so diente dieß nur Theils zur Angabe von welcher Art solche Funktionen seyen, Theils liegt darin die Weise sie zu finden.
Wir befinden uns hiermit bei der gewöhnlichen analytischen Entwickelung, die für den Zweck der Differentialrechnung so gefaßt wird, daß der veränderlichen Größe ein Zuwachs, dx, i gegeben und nun die Potenz des Binomiums durch die Gliederreihe, die ihm angehört, explicirt wird. Der sogenannte Zuwachs aber soll nicht ein Quantum, nur eine Form seyn, deren ganzer Werth ist, zur Entwickelung behülflich zu seyn; was man eingestandenermaßen, am bestimmtesten von Euler und Lagrange, und in der früher erwähnten Vorstellung der Grenze, will, sind nur die sich ergebende Potenzenbestimmungen der veränderlichen Größen, die sogenannten Koefficienten zwar des Zuwachses und der Potenzen desselben, nach denen die Reihe sich ordnet und zu denen die unterschiedenen Koefficienten gehören. Es kann hierzu etwa bemerkt werden, daß indem nur um der Entwickelung willen ein Zuwachs angenommen ist, der ohne Quantum sey, es am geschicktesten gewesen wäre, (das Eins) dafür zu nehmen, indem derselbe in der Entwickelung immer nur als Faktor vorkommt, womit eben der Faktor Eins den Zweck erfüllt, daß keine quantitative Bestimmtheit und Veränderung durch den Zuwachs gesetzt werden solle; dagegen dx mit der falschen Vorstellung von einer quantitativen Differenz, und andere Zeichen, wie i, mit dem hier unnützen Scheine von Allgemeinheit behafftet, immer das Aussehen und die Prätension von einem Quantum und dessen Potenzen haben; welche Prätension dann die Mühe herbeibringt, sie dessenungeachtet wegzubringen und wegzulassen. Um die Form einer nach Potenzen entwickelten Reihe zu behalten, könnten die Exponentenbezeichnungen als indices ebenso gut dem Eins angefügt werden. Aber es muß ohnehin von der Reihe und von der Bestimmung der Koefficienten nach der Stelle, die sie in der Reihe haben, abstrahirt werden, das Verhältniß zwischen allen ist dasselbe; die zweite Funktion wird ganz ebenso aus der ersten, als diese aus der ursprünglichen abgeleitet, und für die als die zweite gezählte ist die erste abgeleitete wieder ursprüngliche Funktion. Wesentlich aber geht das Interesse nicht auf die Reihe, sondern ganz allein auf die sich aus der Entwickelung ergebende Potenzenbestimmung in ihrem Verhältniß zu der für sie unmittelbaren Größe. Anstatt also jene als den Koefficienten des ersten Gliedes der Entwickelung zu bestimmen, da ein Glied als das erste in Beziehung auf die andern in der Reihe folgenden bezeichnet wird, eine solche Potenz als eines Zuwachses aber, wie die Reihe selbst hierher nicht gehören, wäre der bloße Ausdruck abgeleitete Potenzenfunktion oder wie vorhin gesagt wurde, eine Funktion des Potenzirens der Größe vorzuziehen, wobei als bekannt vorausgesetzt wird, auf welche Weise die Ableitung als innerhalb einer Potenz eingeschlossene Entwickelung genommen wird.
Wenn nun der eigentliche mathematische Anfang in diesem Theile der Analytik nichts weiter ist, als das Finden der durch die Potenzen-Entwickelung bestimmten Funktion, so ist die weitere Frage, was mit dem damit erhaltenen Verhältnisse anzufangen ist, wo es eine Anwendung und Gebrauch hat, oder in der That, für welchen Zweck solche Funktionen gesucht werden. Durch das Finden von Verhältnissen, an konkreten Gegenständen, welche sich auf jene abstrakte analytische zurückführen lassen, hat die Differentialrechnung ihr großes Interesse erhalten.
Über die Anwendbarkeit aber ergiebt sich zunächst aus der Natur der Sache, ohne noch aus den Fällen der Anwendung selbst zu schließen, vermöge der aufgezeigten Gestalt der Potenzenmomente, von selbst Folgendes. Die Entwickelung der Potenzengrößen, wodurch sich die Funktionen ihrer Potenzirung ergeben, enthält, von näherer Bestimmung abstrahirt, zunächst überhaupt die Herabsetzung der Größe auf die nächst niedrigere Potenz. Die Anwendbarkeit dieser Operation findet also bei solchen Gegenständen statt, bei welchen gleichfalls ein solcher Unterschied von Potenzenbestimmungen vorhanden ist. Wenn wir nun auf die Raumbestimmtheit reflektiren, so finden wir, daß sie die drei Dimensionen enthält, die wir, um sie von den abstrakten Unterschieden der Höhe, Länge und Breite zu unterscheiden, als die konkreten bezeichnen können, nämlich die Linie, die Fläche und den totalen Raum; und indem sie in ihren einfachsten Formen und in Beziehung auf Selbstbestimmung und damit auf analytische Dimensionen genommen werden, haben wir die gerade Linie, die ebene Fläche und dieselbe als Quadrat, und den Kubus. Die gerade Linie hat ein empirisches Quantum, aber mit der Ebene tritt das Qualitative, die Potenzenbestimmung ein; nähere Modificationen, z.B. daß dieß gleich auch mit den ebenen Kurven geschieht, können wir, insofern es zunächst um den Unterschied bloß im Allgemeinen zu thun ist, unerörtert lassen. Hiermit entsteht auch das Bedürfniß, von einer höheren Potenzenbestimmung zu einer niedrigern und umgekehrt überzugehen, indem z.B. lineare Bestimmungen aus gegebenen Gleichungen der Fläche u.s.f. oder umgekehrt abgeleitet werden sollen. —Die Bewegung ferner, als an der das Größenverhältniß des durchloffenen Raumes und der dazu gehörigen verflossenen Zeit zu betrachten ist, zeigt sich in den verschiedenen Bestimmungen einer schlechtgleichförmigen, einer gleichförmig beschleunigten, einer abwechselnd gleichförmig beschleunigten und gleichförmig retardirten, —in sich zurückkehrenden Bewegung; indem diese unterschiedenen Arten der Bewegung nach dem Größenverhältnisse ihrer Momente, des Raums und der Zeit, ausgedrückt werden, ergeben sich für sie Gleichungen aus unterschiedenen Potenzenbestimmungen, und insofern es Bedürfniß seyn kann, eine Art der Bewegung oder auch der Raumgrößen, an welche eine Art gebunden ist, aus einer anderen Art derselben zu bestimmen, führt die Operation gleichfalls das Übergehen von einer Potenzenfunktion zu einer höhern oder medrigern herbei.—Die Beispiele dieser zwei Gegenstände mögen für den Zweck, zu dem sie angeführt sind, genügen.
Der Anschein von Zufälligkeit, welchen die Differentialrechnung in ihren Anwendungen präsentirt, würde schon vereinfacht werden, durch das Bewußtseyn über die Natur der Gebiete, in welchem die Anwendung statt finden kann, und über das eigenthümliche Bedürfniß und die Bedingung dieser Anwendung. Nun aber kommt es weiter innerhalb dieser Gebiete selbst darauf an, zu wissen, zwischen welchen Theilen der Gegenstände der mathematischen Aufgabe ein solches Verhältniß statt finde, als durch den Differentialkalkul eigenthümlich gesetzt wird. Es muß gleich vorläufig bemerkt werden, daß hierbei zweierlei Verhältnisse zu beachten sind. Die Operation des Depotenzirens einer Gleichung, sie nach den abgeleiteten Funktionen ihrer veränderlichen Größen betrachtet, giebt ein Resultat, welches an ihm selbst wahrhaft nicht mehr eine Gleichung, sondern ein Verhältniß ist; dieses Verhältniß ist der Gegenstand der eigentlichen Differentialrechnung. Eben damit auch ist zweitens das Verhältniß vorhanden von der höhern Potenzenbestimmung (der ursprünglichen Gleichung) selbst zu der niedrigern (dem Abgeleiteten). Dieß zweite Verhältniß haben wir hier zunächst bei Seite zu lassen; es wird sich als der eigenthüniliche Gegenstand der Integralrechnung zeigen.
Betrachten wir zunächst das erste Verhältniß, und nehmen zu der aus der sogenannten Anwendung zu entnehmenden Bestimmung des Moments, worin das Interesse der Operation liegt, das einfachste Beispiel an den Kurven vor, die durch eine Gleichung der zweiten Potenz bestimmt sind. Bekanntlich ist unmittelbar durch die Gleichung das Verhältniß der Koordinaten gegeben in einer Potenzenbestimmung. Folgen von der Grundbestimmung sind die Bestimmungen der mit den Koordinaten zusammenhängenden anderen geraden Linien, der Tangente, Subtangente, Normale u.s.f. Die Gleichungen aber zwischen diesen Linien und den Koordinaten sind lineare Gleichungen; die Ganzen, als deren Theile diese Linien bestimmt sind, sind rechtwinklichte Dreiecke von geraden Linien. Der Übergang von der Grundgleichung, welche die Potenzenbestimmung enthält, zu jenen linearen Gleichungen enthält nun den angegebenen Übergang von der ursprünglichen Funktion, d. i. welche eine Gleichung ist, zu der abgeleiteten, welche ein Verhältniß ist, und zwar zwischen gewissen in der Kurve enthaltenen Linien. Der Zusammenhang zwischen dem Verhältnisse dieser Linien und der Gleichung der Curve ist es, um dessen Finden es sich handelt.
Es ist nicht ohne Interesse, von dem Historischen hierüber so viel zu bemerken, daß die ersten Entdecker ihren Fund nur auf eine ganz empirische Weise anzugeben wissen, ohne eine Rechenschaft von der völlig äußerlich gebliebenen Operation geben zu können. Ich begnüge mich hierüber mit der Anführung Barrow's, des Lehrers Newtons. In seinen lect. Opt. et Geom., worin er Probleme der höhern Geometrie nach der Methode der Untheilbaren behandelt, die sich zunächst von dem Eigenthümlichen der Differentialrechnung unterscheidet, giebt er auch, "weil seine Freunde in ihn gedrungen," (lect. X.) sein Verfahren, die Tangente zu bestimmen, an. Man muß bei ihm selbst nachlesen, wie diese Angabe beschaffen ist, um sich eine gehörige Vorstellung zu machen, wie das Verfahren ganz als äußerliche Regel angegeben ist,—in demselben Style, wie vormals in den arithmetischen Schulbüchern die Regel de tri oder noch besser die sogenannte Neunerprobe der Rechnungsarten vorgetragen worden ist. Er macht die Verzeichnung der Linienchen, die man nachher die Inkremente im charakteristischen Dreieck einer Kurve genannt hat, und giebt nun die Vorschrift als eine bloße Regel, die Glieder als überflüssig wegzuwerfen, die in Folge der Entwickelung der Gleichungen, als Potenzen jener Inkremente oder Produkte zum Vorschein kommen, ( etenim isti termini nihilum valebunt ); ebenso seyen die Glieder, die nur aus der ursprünglichen Gleichung bestimmte Größen enthalten, wegzuwerfen (das nachherige Abziehen der ursprünglichen Gleichung von der mit den Inkrementen gebildeten) und zuletzt für das Inkrement der Ordinate die Ordinate selbst und für das Inkrement der Abscisse die Subtangente zu substituiren. Man kann, wenn es so zu reden erlaubt ist, das Verfahren nicht schulmeistermässiger angeben;—die letztere Substitution ist die für die Tangentenbestimmung in der gewöhnlichen Differentialmethode zur Grundlage gemachte Annahme der Proportionalität der Inkremente der Ordinate und Abscisse mit der Ordinate und Subtangente; in Barrows Regel erscheint diese Annahme in ihrer ganz naiven Nacktheit. Eine einfache Weise, die Subtangente zu bestimmen, war gefunden; die Manieren Robervals und Fermats laufen auf Ähnliches hinaus,—die Methode, die größten und kleinsten Werthe zu finden, von der der Letztere ausging, beruht auf denselben Grundlagen und demselben Verfahren. Es war eine mathematische Sucht jener Zeiten, sogenannte Methoden, d. i. Regeln jener Art zu finden, dabei aus ihnen auch ein Geheimniß zu machen, was nicht nur leicht, sondern selbst in einer Rücksicht nöthig war, aus demselben Grunde, als es leicht war,—nämlich weil die Erfinder nur eine empirische äußerliche Regel, keine Methode, d. i. nichts aus anerkannten Principien Abgeleitetes, gefunden hatten. Solche sogenannte Methoden hat Leibnitz von seiner Zeit, und Newton ebenfalls von derselben und unmittelbarer von seinem Lehrer aufgenommen; sie haben durch die Verallgemeinerung ihrer Form und Anwendbarkeit den Wissenschaften neue Bahnen gebrochen, aber damit zugleich das Bedürfniß gehabt, das Verfahren aus der Gestalt bloß äußerlicher Regeln zu reißen, und demselben die erforderliche Berechtigung zu verschaffen gesucht.
Analysiren wir die Methode näher, so ist der wahrhafte Vorgang dieser. Es werden erstlich die Potenzenbestimmungen (versteht sich der veränderlichen Größen), welche die Gleichung enthält, auf ihre ersten Funktionen herabgesetzt. Damit aber wird der Werth der Glieder der Gleichung verändert; es bleibt daher keine Gleichung mehr, sondern es ist nur ein Verhältniß entstanden zwischen der ersten Funktion der einen veränderlichen Größe zu der ersten Funktion der andern; statt px = y[hoch 2] hat man p : 2y oder statt 2 ax—x[hoch 2] = y[hoch 2] hat man a—x : y, was nachher als das Verhältniß dy/dx bezeichnet zu werden pflegte. Die Gleichung ist Gleichung der Curve, dieß Verhältniß, das ganz von derselben abhängig, aus derselben (oben nach einer bloßen Regel) abgeleitet ist, ist dagegen ein lineares, mit welchem gewisse Linien in Proportion sind; p : 2y oder a—x : y sind selbst Verhältnisse aus geraden Linien der Kurve, den Koordinaten und den Parameters; aber damit weiß man noch nichts. Das Interesse ist, von andern an der Kurve vorkommenden Linien zu wissen, daß ihnen jenes Verhältniß zukommt, die Gleichheit zweier Verhältnisse zu finden.—Es ist also zweitens die Frage, welches die geraden, durch die Natur der Kurve bestimmten Linien sind, welche in solchem Verhältnisse stehen?—dieß aber ist es, was schon früher bekannt war, daß nämlich solches auf jenem Wege erhaltenes Verhältniß das Verhältniß der Ordinate zur Subtangente ist. dieß hatten die Alten auf sinnreichem geometrischen Wege gefunden; was die neuern Erfinder entdeckt haben, ist das empirische Verfahren, die Gleichung der Kurve so zuzurichten, daß jenes erste Verhältniß geliefert wird, von dem bereits bekannt war, daß es einem Verhältnisse gleich ist, welches die Linie enthält, hier die Subtangente, um deren Bestimmung es zu thun ist. Theils ist nun jene Zurichtung der Gleichung methodisch gefaßt und gemacht worden,—die Differentation,—Theils aber sind die imaginären Inkremente der Koordinaten und das imaginäre hieraus und einem ebensolchen Inkremente der Tangente gebildete, charakteristische Dreieck erfunden worden, damit die Proportionalität des durch die Depotenzirung der Gleichung gefundenen Verhältnisses mit dem Verhältnisse der Ordinate und der Subtangente nicht als etwas empirisch nur aus der alten Bekanntschaft Aufgenommenes, sondern als ein Erwiesenes dargestellt werde. Die alte Bekanntschaft jedoch erweist sich überhaupt und am unverkennbarsten in der angeführten Form von Regeln als die einzige Veranlassung und respektive Berechtigung der Annahme des charakteristischen Dreiecks und jener Proportionalität.
Lagrange hat nun diese Simulation verworfen, und den ächtwissenschaftlichen Weg eingeschlagen; seiner Methode ist die Einsicht zu verdanken, worauf es ankommt, indem sie darin besteht, die beiden Übergänge, die für die Auflösung der Aufgabe zu machen sind, zu trennen und jede dieser Seiten für sich zu behandeln und zu erweisen. Der eine Theil dieser Auflösung,—indem wir für die nähere Angabe des Ganges bei dem Beispiele der elementarischen Aufgabe, die Subtangente zu finden, bleiben,—der theoretische oder allgemeine Theil, nämlich das Finden der ersten Funktion aus der gegebenen Kurvengleichung, wird für sich regulirt; derselbe giebt ein lineares Verhältniß, also von geraden Linien, die in dem Systeme der Kurvenbestimmung vorkommen. Der andere Theil der Auflösung ist nun die Findung derjenigen Linien an der Kurve, welche in jenem Verhältnisse stehen. Dieß wird nun auf die direkte Weise (Théorie des Fonct. Anal. II. P. II. Chap.) bewerkstelligt, d. i. ohne das charakteristische Dreieck, nämlich ohne unendlichkleine Bogen, Ordinaten und Abscissen anzunehmen und diesen die Bestimmungen von dy und dx, d. i. von den Seiten jenes Verhältnisses und zugleich unmittelbar die Bedeutung der Gleichheit desselben mit der Ordinate und Subtangente selbst zu geben. Eine Linie (wie auch ein Punkt) hat allein ihre Bestimmung, insofern sie die Seite eines Dreiecks ausmacht, wie auch die Bestimmmung eines Punkts nur in einem solchen liegt. Dieß ist, um es ini Vorbeigehen zu erwähnen, der Fundamentalsatz der analytischen Geometrie, welcher die Coordinaten, wie, was dasselbe ist, in der Mechanik das Parallelogramm der Kräfte herbeiführt, das eben darum der vielen Bemühung um einen Beweis ganz unbedürftig ist.—Die Subtangente wird nun als die Seite eines Dreiecks gesetzt, dessen weitere Seiten die Ordinate und die darauf sich beziehende Tangente ist. Letztere hat als gerade Linie zu einer Gleichung p = aq, (+ b hinzuzufügen ist für die Bestimmung unnütz und wird nur um der beliebten Allgemeinheit hinzugesetzt);—die Determination des Verhältnisses p/q fällt in a, den Koefficienten von q, der die respective erste Funktion der Gleichung ist, überhaupt aber nur als a = p/q betrachtet zu werden braucht als, wie gesagt, die wesentliche Determination der geraden Linie, die als Tangente an die Kurve applicirt ist. Indem nun ferner die erste Funktion der Kurvengleichung genommen wird, ist sie ebenso die Determination einer geraden Linie; indem ferner die eine Koordinate p der ersten geraden Linie und y, die Ordinate der Kurve, als dieselben genommen werden, daß also der Punkt, in welchem jene als Tangente angenommene erste gerade die Kurve berührt, gleichfalls der Anfangspunkt der durch die erste Funktion der Kurve bestimmten geraden Linie ist, so kommt es darauf an, zu zeigen, daß diese zweite gerade Linie mit der ersten zusammenfällt, d. h. Tangente ist; algebraisch ausgedrückt, daß indem y = fx und p = Fq ist, und nun y = p, also fx = Fq angenommen wird, auch f'x = F'q. Daß nun die als Tangente applicirte gerade, und jene aus der Gleichung durch deren erste Funktion determinirte gerade Linie zusammenfallen, daß die letztere also Tangente ist; dieß wird mit Zuhilfnahme des Increments i der Abscisse und des durch die Entwickelung der Funktion bestimmten Increments der Ordinate gezeigt. Hier kommt denn also gleichfalls das berüchtigte Increment herein; aber wie es zu dem so eben angegebenen Behufe eingeführt wird, und die Entwickelung der Funktion nach demselben, muß von dem früher erwähnten Gebrauch des Inkrements für das Finden der Differentialgleichung und für das charakteristische Dreieck, wohl unterschieden werden. Der hier gemachte Gebrauch ist berechtigt und nothwendig; er fällt in den Umkreis der Geometrie, indem es zur geometrischen Bestimmung einer Tangente als solcher gehört, daß zwischen ihr und der Kurve, mit der sie einen Punkt gemeinschaftlich hat, keine andere gerade Linie, die gleichfalls in diesen Punkt fiele, durchgehen könne. Denn mit dieser Bestimmung ist die Qualität der Tangente oder Nicht-Tangente auf den Größenunterschied zurückgeführt, und diejenige Linie ist die Tangente, auf welche die größere Kleinheit—schlechthin in Ansehung der Determination, auf welche es ankommt, falle. Diese scheinbar nur relative Kleinheit enthält durchaus nichts Empirisches, d. i. von einem Quantum als solchem Abhängiges, sie ist qualitativ durch die Natur der Formel gesetzt, wenn der Unterschied des Moments, von dem die zu vergleichende Größe abhängt, ein Potenzenunterschied ist; indem derselbe auf i und i[hoch 2] hinauskommt, und i, das zuletzt doch eine Zahl bedeuten soll, dann als ein Bruch vorzustellen ist, so ist i[hoch 2] an und für sich kleiner als i, so daß selbst die Vorstellung von einer beliebigen Größe, in der man i nehmen könne, hier überflüssig und sogar nicht an ihrem Orte ist. Ebendamit hat der Erweis der größern Kleinheit nichts mit einem Unendlich-Kleinen zu thun, das hiermit hier keineswegs hereinzukommen hat.
Wäre es auch nur um der Schönheit und des heutigstags mehr vergessen, aber wohlverdienten Ruhmes willen, daß ich noch Descartes Tangentenmethode anführen will; sie hat übrigens auch eine Beziehung auf die Natur der Gleichungen, über welche dann noch eine fernere Bemerkung zu machen ist. Descartes trägt diese selbstständige Methode, worin die geforderte lineare Bestimmung gleichfalls aus derselben abgeleiteten Funktion gefunden wird, in seiner, sonst auch so fruchtbar gewordenen Geometrie (liv. II. p. 357 ss. Oeuvres compl. ed. Cousin Tom. V.) vor, indem er in derselben die große Grundlage von der Natur der Gleichungen und deren geometrischer Konstruktion und der damit sosehr erweiterten Analysis auf die Geometrie überhaupt, gelehrt hat. Das Problem hat bei ihm die Form der Aufgabe, gerade Linien senkrecht auf beliebige Orte einer Kurve zu ziehen, als wodurch Subtangente u.s.f. bestimmt wird; man begreift die Befriedigung, die er daselbst über seine Entdeckung, die einen Gegenstand von allgemeinem wissenschaftlichen Interesse der damaligen Zeit betraf, und die sosehr geometrisch ist und dadurch so hoch über den oben erwähnten bloßen Regelmethoden seiner Nebenbuhler stand, ausdrückt: j'ose dire que c'est ceci le problème le plus utile et le plus général, non seulement que je sache, mais même que j'aie jamais desire de savoir en géometrie.—Er legt für die Auflösung die analytische Gleichung des rechtwinklichten Dreiecks zu Grund, das durch die Ordinate des Punkts der Kurve, auf welcher die im Probleme verlangte gerade Linie senkrecht seyn soll, dann durch diese selbst, die Normale, und drittens durch den Theil der Achse, der durch die Ordinate und Normale abgeschnitten wird, durch die Subnormale, gebildet wird. Aus der bekannten Gleichung einer Kurve wird nun in jene Gleichung des Dreiecks der Werth es sey der Ordinate oder der Abscisse substituirt, so hat man eine Gleichung des zweiten Grades (und Descartes zeigt, wie auch Kurven, deren Gleichungen höhere Grade enthalten, sich hierauf zurückführen), in welcher nur noch die eine der veränderlichen Größen und zwar im Quadrat und in der ersten Potenz vorkommt;—eine quadratische Gleichung, welche zunächst als eine sogenannte unreine erscheint. Nun macht Descartes die Reflexion, daß wenn der auf der Kurve angenommene Punkt als Durchschnittspunkt derselben und eines Kreises vorgestellt wird, dieser Kreis die Kurve noch in einem anderen Punkte schneiden wird, und alsdenn sich für die zwei damit entstehenden und ungleichen x, zwei Gleichungen mit denselben Konstanten und von derselben Form ergeben;—oder aber nur Eine Gleichung mit ungleichen Werthen von x. Die Gleichung wird aber nur Eine, für das Eine Dreieck, in welchem die Hypotenuse auf die Kurve senkrecht, Normale, ist, was so vorgestellt wird, daß man die beiden Durchschnittspunkte der Kurve durch den Kreis, zusammenfallen, diesen also die Kurve berühren lasse. Damit aber fällt auch der Umstand der ungleichen Wurzeln des x oder y der quadratischen Gleichung hinweg. Bei einer quadratischen Gleichung von zwei gleichen Wurzeln nun aber ist der Koefficient des Gliedes, das die Unbekannte in der ersten Potenz enthält, das Doppelte der nur Einen Wurzel; dieß nun giebt eine Gleichung, durch welche die verlangten Bestimmungen gefunden sind. Dieser Gang ist für den genialen Griff eines ächt analytischen Kopfes anzusehen, wogegen die ganz assertorisch angenommene Proportionalität der Subtangente und der Ordinate mit den unendlich klein seyn sollenden sogenannten Inkrementen der Abscisse und der Ordinate ganz zurücksteht.