Die auf die angegebene Weise erhaltene Endgleichung, welche den Koefficienten des zweiten Gliedes der quadratischen Gleichung gleichsetzt der doppelten Wurzel oder Unbekannten, ist dieselbe, welche durch das Verfahren des Differentialkalkuls gefunden wird. x[hoch 2]—ax—b = 0 differentiirt giebt die neue Gleichung 2x—a = 0; oder x[hoch 3]—px—q = 0 giebt 3x[hoch 2]—p = 0. Es bietet sich hierbei aber die Bemerkung an, daß es sich keineswegs von selbst versteht, daß solche abgeleitete Gleichung auch
richtig ist. Bei einer Gleichung mit zwei veränderlichen Größen, die darum, daß sie veränderliche sind, den Charakter unbekannte Größen zu seyn nicht verlieren, kommt, wie oben betrachtet wurde, nur ein Verhältniß heraus, aus dem angegebenen einfachen Grunde, weil durch das Substituiren der Funktionen der Potenzirung an die Stelle der Potenzen selbst der Werth der beiden Glieder der Gleichung verändert wird, und es für sich selbst noch unbekannt ist, ob auch zwischen ihnen bei so veränderten Werthen noch eine Gleichung Statt finde. Die Gleichung dy/dx = P drückt gar nichts weiter aus, als daß P ein Verhältniß ist, und es ist dem dy/dx sonst kein reeller Sinn zuzuschreiben. Von diesem Verhältniß = P ist es aber ebenso noch unbekannt, welchem andere Verhältnisse es gleich sey; solche Gleichung, die Proportionalität, giebt demselben erst einen Werth und Bedeutung.—Wie angegeben wurde, daß man diese Bedeutung, was die Anwendung hieß, anderswoher, empirisch aufnahm, so muß bei den hier in Rede stehenden durch Differentation abgeleiteten Gleichungen anderswoher gewußt werden, ob sie gleiche Wurzeln haben, um zu wissen, ob die erhaltene Gleichung noch richtig sey. Dieser Umstand wird aber in den Lehrbüchern nicht ausdrücklich bemerklich gemacht; er wird wohl dadurch beseitigt, daß eine Gleichung mit einer unbekannten, auf Null gebracht, sogleich y gesetzt wird, wodurch dann bei der Differentation allerdings ein dy/dx, nur ein Verhältniß herauskommt. Der Funktionen-Kalkul soll es allerdings mit Funktionen der Potenzirung oder die Differentialrechnung mit Differentialien zu thun haben, aber daraus folgt für sich noch keineswegs, daß die Größen, deren Differentialien oder Funktionen der Potenzirung genommen werden, selbst auch nur Funktionen anderer Größen seyn sollen. In dem theoretischen Theile, der Anweisung, die Differentiale, d. i. die Funktionen der Potenzirung abzuleiten, wird ohnehin noch nicht daran gedacht, daß die Größen, die nach solcher Ableitung zu behandeln gelehrt wird, selbst Funktionen anderer Größen seyn sollen.
Noch kann in Ansehung des Weglassens der Konstante bei dem Differentiiren bemerklich gemacht werden, daß dasselbe hier den Sinn hat, daß die Konstante für die Bestimmung der Wurzeln im Falle ihrer Gleichheit gleichgültig ist, als welche Bestimmung durch den Koefficienten des zweiten Gliedes der Gleichung erschöpft ist. Wie im angeführten Beispiele von Descartes die Konstante das Quadrat der Wurzeln selbst ist, also diese aus der Konstante ebenso wie aus den Koefficienten, bestimmt werden kann; indem sie überhaupt, wie die Koefficienten, Funktion der Wurzeln der Gleichung ist. In der gewöhnlichen Darstellung erfolgt das Wegfallen der sogenannten nur durch + und—mit den übrigen Gliedern verbundenen Konstanten durch den bloßen Mechanismus des Verfahrens, daß um das Differential eines zusammengesetzten Ausdrucks zu finden, nur den veränderlichen Größen ein Zuwachs gegeben, und der hierdurch formirte Ausdruck von dem ursprünglichen abgezogen wird. Der Sinn der Konstanten und ihres Weglassens inwiefern sie selbst Funktionen sind und nach dieser Bestimmung dienen oder nicht, kommt nicht zur Sprache.
Mit dem Weglassen der Konstanten, hängt eine ähnliche Bemerkung zusammen, die über die Namen von Differentation und Integration, gemacht werden kann, als früher über den endlichen und unendlichen Ausdruck gemacht wurde, daß nämlich in ihrer Bestimmung vielmehr das Gegentheil von dem liegt, was der Ausdruck besagt. Differentiiren bezeichnet das Setzen von Differenzen; durch das Differentiiren aber wird eine Gleichung vielmehr auf weniger Dimensionen herabgebracht, durch das Weglassen der Konstante wird ein Moment der Bestimmtheit hinweggenommen; wie bemerkt, werden die Wurzeln der veränderlichen Größe auf eine Gleichheit gesetzt, die Differenz also derselben aufgehoben. In der Integration hingegen soll die Konstante wieder hinzugesetzt werden; die Gleichung wird dadurch allerdings, aber in dem Sinne integrirt, daß die vorher aufgehobene Differenz der Wurzeln wieder hergestellt, das Gleichgesetzte wieder differentiirt wird. —Der gewöhnliche Ausdruck trägt dazu bei, die wesentliche Natur der Sache in Schatten zu setzen und Alles auf den untergeordneten, ja der Hauptsache fremdartigen Gesichtspunkt Theils der unendlich kleinen Differenz, des Increments und dergleichen, Theils der bloßen Differenz überhaupt zwischen der gegebenen und der abgeleiteten Funktion, ohne deren specifischen, d. i. den qualitativen Unterschied zu bezeichnen, zu stellen.
Ein anderes Hauptgebiet, in welchem von dem Differentialkalkul Gebrauch gemacht wird, ist die Mechanik; von den unterschiedenen Potenzen-Funktionen, die sich bei den elementarischen Gleichungen ihres Gegenstandes, der Bewegung ergeben, sind deren Bedeutungen bereits beiläufig erwähnt; ich will dieselben hier direkt aufnehmen. Die Gleichung, nämlich der mathematische Ausdruck, der schlechtgleichförmigen Bewegung c = s/t oder s = ct, in welcher die durch offenen Räume den verflossenen Zeiten nach einer empirischen Einheit c, der Größe der Geschwindigkeit, proportionirt sind, bietet für die Differentation keinen Sinn dar; der Koefficient c ist bereits vollkommen bestimmt und bekannt, und es kann keine weitere Potenzenentwicklung Statt finden.—Wie s = at[hoch 2], die Gleichung der Bewegung des Falles, analysirt wird, ist früher schon erinnert; —das erste Glied der Analyse ds/dt = 2 at wird in die Sprache und resp. in die Existenz so übersetzt, es solle ein Glied einer Summe (- welche Vorstellung wir längst entfernt haben), der eine Theil der Bewegung seyn und zwar solle dieser der Kraft der Trägheit, d. i. einer schlechtgleichförmigen Geschwindigkeit so zukommen, daß in den unendlich-kleinen Zeittheilen die Bewegung gleichförmig, in den endlichen Zeittheilen d. h. in der That existirenden aber ungleichförmig sey. Freilich ist fs = 2at; und die Bedeutung voll a und von t für sich bekannt, so wie daß hiermit die Bestimmung von gleichförmiger Geschwindigkeit einer Bewegung gesetzt ist; da a = s/[t[hoch 2] ist 2 at = 2s/t überhaupt; damit aber weiß man im geringsten nichts weiter; nur die fälschliche Annahme, daß 2at ein Theil der Bewegung als einer Summe sey, giebt den fälschlichen Schein eines physikalischen Satzes. Der Faktor selbst, a, die empirische Einheit—ein Quantum als solches—wird der Schwere zugeschrieben; wenn die Kategorie der Kraft der Schwere gebraucht wird, so ist vielmehr zu sagen, daß eben das Ganze s = at[hoch 2] die Wirkung oder besser das Gesetz der Schwere ist.—Gleichmäßig ist der aus ds/dt = 2at abgeleitete Satz, daß wenn die Schwere aufhörte zu wirken, der Körper mit der am Ende seines Falles erlangten Geschwindigkeit den doppelten Raum von dem, welchen er durchloffen hat, in einer der Dauer seines Falles gleichen Zeit zurücklegen würde.—Es liegt hierin auch eine für sich schiefe Metaphysik; das Ende des Falles, oder das Ende eines Zeittheils, in welchem der Körper gefallen, ist immer selbst noch ein Zeittheil; wäre es kein Zeittheil, so wäre Ruhe und damit keine Geschwindigkeit angenommen, die Geschwindigkeit kann nur nach dem Raume angesetzt werden, welcher in einem Zeittheil, nicht an seinem Ende, durchloffen worden ist.—Wenn nun aber vollends in andern physikalischen Gebieten, wo gar keine Bewegung vorhanden ist, wie z.B. im Verhalten des Lichts (außer dem, was seine Fortpflanzung im Raume genannt wird) und Größenbestimmungen an den Farben, eine Anwendung der Differentialrechnung gemacht wird und die erste Funktion von einer quadratischen Funktion hier auch Geschwindigkeit genannt wird, so ist dieß für einen noch unstatthafteren Formalismus der Erdichtung von Existenz anzusehen. -Bewegung, welche durch die Gleichung s = at[hoch 2] vorgestellt wird, finden wir, sagt Lagrange in der Erfahrung vom Falle der Körper; die einfachste Bewegung derselben würde die seyn, deren Gleichung s = ct[hoch 3] wäre, aber die Natur zeige keine Bewegung dieser Art; wir wüßten nicht was der Koefficient c bedeuten könnte. Wenn dem wohl so ist, so giebt es dagegen eine Bewegung, deren Gleichung s[hoch 3] = at[hoch 2] ist,—das kepplerische Gesetz der Bewegung der Körper des Sonnensystems; was hier die erste abgeleitete Funktion 2at/[3s [hoch 2] u.s.f. bedeuten soll, und die fernere direkte Behandlung dieser Gleichung durch die Differentation, die Entwicklung der Gesetze und Bestimmungen jener absoluten Bewegung von diesem Ausgangspunkte aus, müßte dagegen wohl als eine interessante Aufgabe erscheinen, in welcher die Analysis im würdigsten Glanze sich zeigen würde.
Für sich bietet so die Anwendung des Differential-Kalkuls auf die elementarischen Gleichungen der Bewegung kein reelles Interesse dar; das formelle Interesse kommt von dem allgemeinen Mechanismus des Kalkuls. Eine andre Bedeutung aber erhält die Zerlegung der Bewegung in Beziehung auf die Bestimmung ihrer Trajektorie; wenn dieses eine Kurve ist und ihre Gleichung höhere Potenzen enthält, bedarf es der Übergänge von geradlinigten Funktionen als Funktionen der Potenzirnng, zu den Potenzen selbst, und indem jene aus der ursprünglichen Gleichung der Bewegung, welche den Faktor der Zeit enthält, mit Elimination der Zeit zu gewinnen sind, ist dieser zugleich auf die niedrigern Entwicklungsfunktionen herabzusetzen, aus welchen jene Gleichungen linearer Bestimmungen erhalten werden können. Diese Seite führt auf das Interesse des andern Theils der Differentialrechnung.
Das Bisherige hat den Zweck gehabt, die einfache specifische Bestimmung des Differential-Kalkuls herauszuheben und festzustellen, und dieselbe in einigen der elementarischen Beispiele nachzuweisen. Diese Bestimmung hat sich ergeben darin zu bestehen, daß aus einer Gleichung von Potenzenfunktionen der Koefficient des Entwicklungsgliedes, die sogenannte erste Funktion gefunden, und das Verhältniß, welches diese ist, in Momenten des konkreten Gegenstands aufgewiesen werde, durch welche so erhaltene Gleichung zwischen den beiden Verhältnissen diese Momente selbst bestimmt sind. Es ist ebenso von dem Princip der Integralrechnung kurz zu betrachten, was sich aus dessen Anwendung, für die specifische konkrete Bestimmnng derselben ergiebt. Die Ansicht dieses Kalkuls ist dadurch schon vereinfacht und richtiger bestimmt worden, daß er nicht mehr als Summationsmethode genommen wird, wie er im Gegensatz gegen das Differentiiren, wo der Zuwachs als das wesentliche Ingrediens gilt, genannt wurde, und womit er in wesentlichem Zusammenhang mit der Form der Reihe erschien.—Die Aufgabe dieses Kalkuls ist zunächst ebenso die theoretische oder vielmehr formelle, als die der Differentialrechnung, bekanntlich aber die umgekehrte von dieser;—es wird hier von einer Funktion ausgegangen, die als abgeleitete, als der Koefficient des nächsten aus der Entwicklung einer aber noch unbekannten Gleichung entsprungenen Gliedes betrachtet wird, und aus ihr soll die ursprüngliche Potenzen-Funktion gefunden werden; die in der natürlichen Ordnung der Entwicklung als ursprünglich anzusehende wird hier abgeleitet und die früher als abgeleitet betrachtete ist hier die gegebene oder überhaupt die anfangende. Das Formelle dieser Operation scheint nun aber bereits durch den Differential-Kalkul geleistet zu seyn; indem darin überhaupt der Übergang und das Verhältniß von der ursprünglichen zu der Entwicklungsfunktion festgestellt ist. Wenn hierbei Theils schon um die Funktion, von der auszugehen ist, anzusetzen, Theils aber den Übergang von ihr zu der ursprünglichen zu bewerkstelligen, nothwendig in vielen Fällen zu der Form der Reihe die Zuflucht genommen werden muß, so ist zunächst festzuhalten, daß diese Form als solche mit dem eigenthümlichen Prinzip des Integrirens unmittelbar nichts zu thun hat.
Der andere Theil nun aber der Aufgabe des Kalkuls erscheint in Rücksicht auf die formelle Operation die Anwendung derselben. Diese ist nun selbst die Aufgabe, nämlich die Bedeutung in dem oben angegebenen Sinne zu kennen, welche die ursprüngliche Funktion von der gegebenen als ersten Funktion betrachteten eines besondern Gegenstandes hat. An sich könnte auch diese Lehre bereits in der Differentialrechnung ganz abgethan zu seyn scheinen; allein es tritt ein weiterer Umstand ein, der die Sache nicht so einfach seyn läßt. Indem nämlich in diesem Kalkul sich ergeben, daß durch die erste Funktion der Gleichung einer Kurve das Verhältniß, welches ein lineares ist, erhalten worden, so weiß man damit auch, daß die Integration dieses Verhältnisses die Gleichung der Kurve im Verhältnisse der Abscisse und Ordinate giebt; oder wenn die Gleichung für die Ebene einer Kurve gegeben wäre, so würde die Differentialrechnung über die Bedeutung der ersten Funktion solcher Gleichung bereits gelehrt haben sollen, daß diese Funktion die Ordinate als Funktion der Abscisse, hiermit die Gleichung der Kurve darstellte.
Nun kömmt es aber darauf an, welches von den Bestimmungsmomenten des Gegenstandes in der Gleichung selbst gegeben ist; denn nur von dem Gegebenen kann die analytische Behandlung den Ausgang nehmen und von da zu den übrigen Bestimmungen des Gegenstands übergehen. Es ist z. B. nicht die Gleichung eines Flächenraums der Kurve, noch etwa des durch ihre Umdrehung entstehenden Körpers, noch auch eines Bogens derselben, sondern nur das Verhältniß der Abscisse und Ordinate in der Gleichung der Kurve selbst gegeben. Die Übergänge von jenen Bestimmungen zu dieser Gleichung selbst können daher nicht schon in der Differentialrechnung behandelt werden; es wird für die Integralrechnung aufgespart, diese Verhältnisse zu finden.
Ferner aber ist gezeigt worden, daß die Differentiirung der Gleichung von mehreren veränderlichen Größen, die Entwicklungspotenz oder Differential-Koefficienten, nicht als eine Gleichung, sondern nur als ein Verhältniß giebt; die Aufgabe ist dann für dieß Verhältniß, welches die abgeleitete Funktion ist, ein zweites in den Momenten des Gegenstandes anzugeben, das jenem gleich sey. Dagegen ist das Object der Integralrechnung das Verhältniß selbst der ursprünglichen zu der abgeleiteten, hier gegeben seyn sollenden Funktion, und die Aufgabe ist, die Bedeutung der zu findenden ursprünglichen Funktion in dem Gegenstande der gegebenen ersten Funktion anzugeben, oder vielmehr indem diese Bedeutung z.B. die Ebene einer Kurve oder die zu rectificirende, als geradlinigt vorgestellte Kurve u.s.f. schon als das Problem ausgesprochen ist, zu zeigen, daß solche Bestimmung durch eine ursprüngliche Funktion gefunden werde und welches das Moment des Gegenstandes sey, welches hierfür zur Ausgangs- (der abgeleiteten) Funktion, angenommen werden müsse.