sind ein sprechender Ausdruck für die Verlegenheit: wir haben die Gleichheit nöthig; deshalb die 1; wir haben die Verschiedenheit nöthig; deshalb die Indices, die nur leider die Gleichheit wieder aufheben.

§ 37. Bei andern Schriftstellern stossen wir auf dieselbe Schwierigkeit. Locke[65] sagt: »Durch Wiederholung der Idee einer Einheit und Hinzufügung derselben zu einer andern Einheit machen wir demnach eine collective Idee, die durch das Wort »zwei« bezeichnet wird. Und wer das thun und so weitergehen kann, immer noch Eins hinzufügend zu der letzten collectiven Idee, die er von einer Zahl hatte, und ihr einen Namen geben kann, der kann zählen.« Leibniz[66] definirt Zahl als 1 und 1 und 1 oder als Einheiten. Hesse[67] sagt: »Wenn man sich eine Vorstellung machen kann von der Einheit, die in der Algebra mit dem Zeichen 1 ausgedrückt wird, … so kann man sich auch eine zweite gleichberechtigte Einheit denken und weitere derselben Art. Die Vereinigung der zweiten mit der ersten zu einem Ganzen giebt die Zahl 2«.

Hier ist auf die Beziehung zu achten, in der die Bedeutungen der Wörter »Einheit« und »Eins« zu einander stehen. Leibniz versteht unter Einheit einen Begriff, unter den die Eins und die Eins und die Eins fallen, wie er denn auch sagt: »Das Abstracte von Eins ist die Einheit.« Locke und Hesse scheinen Einheit und Eins gleichbedeutend zu gebrauchen. Im Grunde thut dies wohl auch Leibniz; denn indem er die einzelnen Gegenstände, die unter den Begriff der Einheit fallen, sämmtlich Eins nennt, bezeichnet er mit diesem Worte nicht den einzelnen Gegenstand, sondern den Begriff, unter den sie fallen.

§ 38. Um nicht Verwirrung einreissen zu lassen, wird es jedoch gut sein, einen Unterschied zwischen Einheit und Eins streng aufrecht zu erhalten. Man sagt »die Zahl Eins« und deutet mit dem bestimmten Artikel einen bestimmten, einzelnen Gegenstand der wissenschaftlichen Forschung an. Es giebt nicht verschiedene Zahlen Eins, sondern nur Eine. Wir haben in 1 einen Eigennamen, der als solcher eines Plurals ebenso unfähig ist wie »Friedrich der Grosse« oder »das chemische Element Gold.« Es ist nicht Zufall und nicht eine ungenaue Bezeichnungsweise, dass man 1 ohne unterscheidende Striche schreibt. Die Gleichung

3 − 2 = 1

würde St. Jevons etwa so wiedergeben:

(1´ + 1´´ + 1´´´) − (1´´ + 1´´´) = 1´

Was würde aber das Ergebniss von

(1´ + 1´´ + 1´´´) − (1´´´´ + 1´´´´´)

sein? Jedenfalls nicht 1´. Daraus geht hervor, dass es nach seiner Auffassung nicht nur verschiedene Einsen, sondern auch verschiedene Zweien u. s. w. geben würde; denn 1´´ + 1´´´ könnte nicht durch 1´´´´ + 1´´´´´ vertreten werden. Man sieht hieraus recht deutlich, dass die Zahl nicht eine Anhäufung von Dingen ist. Die Arithmetik würde aufgehoben werden, wollte man statt der Eins, die immer dieselbe ist, verschiedene Dinge einführen, wenn auch in noch so ähnlichen Zeichen; gleich dürften sie ja ohne Fehler nicht sein. Man kann doch nicht annehmen, dass das tiefste Bedürfniss der Arithmetik eine fehlerhafte Schreibung sei. Darum ist es unmöglich 1 als Zeichen für verschiedene Gegenstände anzusehen, wie Island, Aldebaran, Solon u. dgl. Am greifbarsten wird der Unsinn, wenn man an den Fall denkt, dass eine Gleichung drei Wurzeln hat, nämlich 2 und 5 und 4. Schreibt man nun nach Jevons für 3: