Das Wort »Einheit« ist vortrefflich geeignet, diese Schwierigkeit zu verhüllen; und das ist der – wenn auch unbewusste – Grund, warum man es den Wörtern »Gegenstand« und »Ding« vorzieht. Man nennt zunächst die zu zählenden Dinge Einheiten, wobei die Verschiedenheit ihr Recht erhält; dann geht die Zusammenfassung, Sammlung, Vereinigung, Hinzufügung, oder wie man es sonst nennen will, in den Begriff der arithmetischen Addition über und das Begriffswort »Einheit« verwandelt sich unvermerkt in den Eigennamen »Eins«. Damit hat man dann die Gleichheit. Wenn ich an den Buchstaben u ein n und daran ein d füge, so sieht jeder leicht ein, dass das nicht die Zahl 3 ist. Wenn ich aber u, n und d unter den Begriff »Einheit« bringe und nun für »u und n und d« sage »eine Einheit und eine Einheit und noch eine Einheit« oder »1 und 1 und 1«, so glaubt man leicht damit die 3 zu haben. Die Schwierigkeit wird durch das Wort »Einheit« so gut versteckt, dass gewiss nur wenige Menschen eine Ahnung von ihr haben.

Hier könnte Mill mit Recht tadelnd von einem kunstfertigen Handhaben der Sprache reden; denn hier ist es nicht die äussere Erscheinung eines Denkvorganges, sondern es spiegelt einen solchen nur vor. Hier hat man in der That den Eindruck, als ob den von Gedanken leeren Worten eine gewisse geheimnissvolle Kraft beigelegt werde, wenn Verschiedenes blos dadurch, dass man es Einheit nennt, gleich werden soll.

Versuche, die Schwierigkeit zu überwinden.

§ 40. Wir betrachten nun einige Ausführungen, die sich als Versuche zur Ueberwindung dieser Schwierigkeit darstellen, wenn sie auch wohl nicht immer mit klarem Bewusstsein in dieser Absicht gemacht sind.

Man kann zunächst eine Eigenschaft des Raumes und der Zeit zu Hilfe rufen. Ein Raumpunkt ist nämlich von einem andern, eine Gerade oder Ebene von einer andern, congruente Körper, Flächen- oder Linienstücke von einander, für sich allein betrachtet, gar nicht zu unterscheiden, sondern nur in ihrem Zusammensein als Bestandteile einer Gesammtanschauung. So scheint sich hier Gleichheit mit Unterscheidbarkeit zu vereinen. Aehnliches gilt von der Zeit. Daher meint wohl Hobbes,[68] dass die Gleichheit der Einheiten anders als durch Theilung des Continuums entstehe, könne kaum gedacht werden. Thomae[69] sagt: »Stellt man eine Menge von Individuen oder Einheiten im Raume vor und zählt man sie successive, wozu Zeit erforderlich ist, so bleibt bei aller Abstraction als unterscheidendes Merkmal der Einheiten noch ihre verschiedene Stellung im Raume und ihre verschiedene Aufeinanderfolge in der Zeit übrig.«

Zunächst erhebt sich das Bedenken gegen eine solche Auffassungsweise, dass dann das Zählbare auf das Räumliche und Zeitliche beschränkt wäre. Schon Leibniz[70] weist die Meinung der Scholastiker zurück, die Zahl entstehe aus der blossen Theilung des Continuums und könne nicht auf unkörperliche Dinge angewandt werden. Baumann[71] betont die Unabhängigkeit von Zahl und Zeit. Der Begriff der Einheit sei auch ohne die Zeit denkbar. St. Jevons[72] sagt: »Drei Münzen sind drei Münzen, ob wir sie nun nach einander zählen oder sie alle zugleich betrachten. In vielen Fällen ist weder Zeit noch Raum der Grund des Unterschiedes, sondern allein Qualität. Wir können Gewicht, Trägheit und Härte des Goldes als drei Eigenschaften auffassen, obgleich keine von diesen vor noch nach der andern ist weder im Raum noch in der Zeit. Jedes Mittel der Unterscheidung kann eine Quelle der Vielheit sein.« Ich füge hinzu: wenn die gezählten Gegenstände nicht wirklich auf einander folgen, sondern nur nach einander gezählt werden, so kann die Zeit nicht der Grund der Unterscheidung sein. Denn, um sie nach einander zählen zu können, müssen wir schon unterscheidende Kennzeichen haben. Die Zeit ist nur ein psychologisches Erforderniss zum Zählen, hat aber mit dem Begriffe der Zahl nichts zu thun. Wenn man unräumliche und unzeitliche Gegenstände durch Raum- oder Zeitpunkte vertreten lässt, so kann dies vielleicht für die Ausführung der Zählung vortheilhaft sein; grundsätzlich wird aber dabei die Anwendbarkeit des Zahlbegriffes auf Unräumliches und Unzeitliches vorausgesetzt.

§ 41. Wird denn aber der Zweck der Vereinigung von Unterscheidbarkeit und Gleichheit wirklich erreicht, wenn wir von allen unterscheidenden Kennzeichen ausser den räumlichen und zeitlichen absehen? Nein! Wir sind der Lösung nicht um Einen Schritt näher gekommen. Die grössere oder geringere Aehnlichkeit der Gegenstände thut nichts zur Sache, wenn sie doch zuletzt aus einander gehalten werden müssen. Ich darf die einzelnen Punkte, Linien u. s. f. hier ebenso wenig alle mit 1 bezeichnen, als ich sie bei geometrischen Betrachtungen sämmtlich A nennen darf; denn hier wie dort ist es nöthig, sie zu unterscheiden. Nur für sich, ohne Rücksicht auf ihre räumlichen Beziehungen sind die Raumpunkte einander gleich. Soll ich sie aber zusammenfassen, so muss ich sie in ihrem räumlichen Zusammensein betrachten, sonst schmelzen sie unrettbar in Einem zusammen. Punkte stellen in ihrer Gesammtheit vielleicht irgendeine sternbildartige Figur vor oder sind irgendwie auf einer Geraden angeordnet, gleiche Strecken bilden vielleicht mit den Endpunkten zusammenstossend eine einzige Strecke oder liegen getrennt von einander. Die so entstehenden Gebilde können für dieselbe Zahl ganz verschieden sein. So würden wir auch hier verschiedene Fünfen, Sechsen u. s. w. haben. Die Zeitpunkte sind durch kurze oder lange, gleiche oder ungleiche Zwischenzeiten getrennt. Alles dies sind Verhältnisse, die mit der Zahl an sich gar nichts zu thun haben. Ueberall mischt sich etwas Besonderes ein, worüber die Zahl in ihrer Allgemeinheit weit erhaben ist. Sogar ein einzelner Moment hat etwas Eigenthümliches, wodurch er sich etwa von einem Raumpunkte unterscheidet, und wovon nichts in dem Zahlbegriffe vorkommt.

§ 42. Auch der Ausweg, räumliche und zeitliche Anordnung durch einen allgemeinern Reihenbegriff zu ersetzen, führt nicht zum Ziele; denn die Stelle in der Reihe kann nicht der Grund des Unterscheidens der Gegenstände sein, weil diese schon irgendworan unterschieden sein müssen, um in eine Reihe geordnet werden zu können. Eine solche Anordnung setzt immer Beziehungen zwischen den Gegenständen voraus, seien es nun räumliche oder zeitliche oder logische oder Tonintervalle oder welche sonst, durch die man sich von einem zum andern leiten lässt, und die mit deren Unterscheidung nothwendig verbunden sind.

Wenn Hankel[73] ein Object 1 mal, 2 mal, 3 mal denken oder setzen lässt, so scheint auch dies ein Versuch zu sein, die Unterscheidbarkeit mit der Gleichheit des zu Zählenden zu vereinen. Aber man sieht auch sofort, dass es kein gelungener ist; denn diese Vorstellungen oder Anschauungen desselben Gegenstandes müssen, um nicht in Eine zusammenzufliessen, irgendwie verschieden sein. Ich meine auch, dass man berechtigt ist, von 45 Millionen Deutschen zu sprechen, ohne vorher 45 Millionen mal einen Normal-Deutschen gedacht oder gesetzt zu haben; das möchte etwas umständlich sein.

§ 43. Wahrscheinlich um die Schwierigkeiten zu vermeiden, die sich ergeben, wenn man mit St. Jevons jedes Zeichen 1 einen der gezählten Gegenstände bedeuten lässt, will E. Schröder dadurch einen Gegenstand nur abbilden. Die Folge ist, dass er nur das Zahlzeichen, nicht die Zahl erklärt. Er sagt nämlich[74]: »Um nun ein Zeichen zu erhalten, welches fähig ist auszudrücken, wieviele jener Einheiten[75] vorhanden sind, richtet man die Aufmerksamkeit der Reihe nach einmal auf eine jede derselben und bildet sie mit einem Strich: 1 (eine Eins, ein Einer) ab; diese Einer setzt man in eine Zeile neben einander, verbindet sie jedoch unter sich durch das Zeichen + (plus), da sonst zum Beispiel 111 nach der gewöhnlichen Zahlenbezeichnung als einhundert und elf gelesen würde. Man erhält auf diese Weise ein Zeichen wie: