In der That, wäre es nicht am passendsten, einen Begriff Einheit zu nennen in Bezug auf die Anzahl, welche ihm zukommt? Wir können dann den Aussagen über die Einheit, dass sie von der Umgebung abgesondert und untheilbar sei, einen Sinn abgewinnen. Denn der Begriff, dem die Zahl beigelegt wird, grenzt im Allgemeinen das unter ihn Fallende in bestimmter Weise ab. Der Begriff »Buchstabe des Wortes Zahl« grenzt das Z gegen das a, dieses gegen das h u. s. w. ab. Der Begriff »Silbe des Wortes Zahl« hebt das Wort als ein Ganzes und in dem Sinne Untheilbares heraus, dass die Theile nicht mehr unter den Begriff »Silbe des Wortes Zahl« fallen. Nicht alle Begriffe sind so beschaffen. Wir können z. B. das unter den Begriff des Rothen Fallende in mannigfacher Weise zertheilen, ohne dass die Theile aufhören, unter ihn zu fallen. Einem solchen Begriffe kommt keine endliche Zahl zu. Der Satz von der Abgegrenztheit und Untheilbarkeit der Einheit lässt sich demnach so aussprechen:

Einheit in Bezug auf eine endliche Anzahl kann nur ein solcher Begriff sein, der das unter ihn Fallende bestimmt abgrenzt und keine beliebige Zertheilung gestattet.

Man sieht aber, dass Untheilbarkeit hier eine besondere Bedeutung hat.

Nun beantworten wir leicht die Frage, wie die Gleichheit mit der Unterscheidbarkeit der Einheiten zu versöhnen sei. Das Wort »Einheit« ist hier in doppeltem Sinne gebraucht. Gleich sind die Einheiten in der oben erklärten Bedeutung dieses Worts. In dem Satze: »Jupiter hat vier Monde« ist die Einheit »Jupitersmond«. Unter diesen Begriff fällt sowohl I als auch II, als auch III, als auch IV. Daher kann man sagen: die Einheit, auf die I bezogen wird, ist gleich der Einheit, auf die II bezogen wird u. s. f. Da haben wir die Gleichheit. Wenn man aber die Unterscheidbarkeit der Einheiten behauptet, so versteht man darunter die der gezählten Dinge.


IV. Der Begriff der Anzahl.

Jede einzelne Zahl ist ein selbständiger Gegenstand.

§ 55. Nachdem wir erkannt haben, dass die Zahlangabe eine Aussage von einem Begriffe enthält, können wir versuchen, die leibnizischen Definitionen der einzelnen Zahlen durch die der 0 und der 1 zu ergänzen.

Es liegt nahe zu erklären: einem Begriffe kommt die Zahl 0 zu, wenn kein Gegenstand unter ihn fällt. Aber hier scheint an die Stelle der 0 das gleichbedeutende »kein« getreten zu sein; deshalb ist folgender Wortlaut vorzuziehen: einem Begriffe kommt die Zahl 0 zu, wenn allgemein, was auch a sei, der Satz gilt, dass a nicht unter diesen Begriff falle.

In ähnlicher Weise könnte man sagen: einem Begriffe F kommt die Zahl 1 zu, wenn nicht allgemein, was auch a sei, der Satz gilt, dass a nicht unter F falle, und wenn aus den Sätzen