festgestellt; aber es nicht erlaubt, hierin die 0, die 1 als selbständige, wiedererkennbare Gegenstände zu unterscheiden.
§ 57. Es ist hier der Ort, unsern Ausdruck, dass die Zahlangabe eine Aussage von einem Begriffe enthalte, etwas genauer ins Auge zu fassen. In dem Satze »dem Begriffe F kommt die Zahl 0 zu« ist 0 nur ein Theil des Praedicates, wenn wir als sachliches Subject den Begriff F betrachten. Deshalb habe ich es vermieden, eine Zahl wie 0, 1, 2 Eigenschaft eines Begriffes zu nennen. Die einzelne Zahl erscheint eben dadurch, dass sie nur einen Theil der Aussage bildet, als selbständiger Gegenstand. Ich habe schon oben darauf aufmerksam gemacht, dass man »die 1« sagt und durch den bestimmten Artikel 1 als Gegenstand hinstellt. Diese Selbständigkeit zeigt sich überall in der Arithmetik, z. B. in der Gleichung 1 + 1 = 2. Da es uns hier darauf ankommt, den Zahlbegriff so zu fassen, wie er für die Wissenschaft brauchbar ist, so darf es uns nicht stören, dass im Sprachgebrauche des Lebens die Zahl auch attributiv erscheint. Dies lässt sich immer vermeiden. Z. B. kann man den Satz »Jupiter hat vier Monde« umsetzen in »die Zahl der Jupitersmonde ist vier«. Hier darf das »ist« nicht als blosse Copula betrachtet werden, wie in dem Satze »der Himmel ist blau«. Das zeigt sich darin, dass man sagen kann: »die Zahl der Jupitersmonde ist die vier« oder »ist die Zahl 4«. Hier hat »ist« den Sinn von »ist gleich,« »ist dasselbe wie«. Wir haben also eine Gleichung, die behauptet, dass der Ausdruck »die Zahl der Jupitersmonde« denselben Gegenstand bezeichne wie das Wort »vier.« Und die Form der Gleichung ist die herrschende in der Arithmetik. Gegen diese Auffassung streitet nicht, dass in dem Worte »vier« nichts von Jupiter oder von Mond enthalten ist. Auch in dem Namen »Columbus« liegt nichts von Entdecken oder von Amerika und dennoch wird derselbe Mann Columbus und der Entdecker Amerikas genannt.
§ 58. Man könnte einwenden, dass wir uns von dem Gegenstande, den wir Vier oder die Anzahl der Jupitersmonde nennen, als von etwas Selbständigem durchaus keine Vorstellung[79] machen können. Aber die Selbständigkeit, die wir der Zahl gegeben haben, ist nicht Schuld daran. Zwar glaubt man leicht, dass in der Vorstellung von vier Augen eines Würfels etwas vorkomme, was dem Worte »vier« entspräche; aber das ist Täuschung. Man denke an eine grüne Wiese und versuche, ob sich die Vorstellung ändert, wenn man den unbestimmten Artikel durch das Zahlwort »Ein« ersetzt. Es kommt nichts hinzu, während doch dem Worte »grün« etwas in der Vorstellung entspricht. Wenn man sich das gedruckte Wort »Gold« vorstellt, wird man zunächst an keine Zahl dabei denken. Fragt man sich nun, aus wieviel Buchstaben es bestehe, so ergiebt sich die Zahl 4; aber die Vorstellung wird dadurch nicht etwa bestimmter, sondern kann ganz unverändert bleiben. Der hinzutretende Begriff »Buchstabe des Wortes Gold« ist eben das, woran wir die Zahl entdecken. Bei den vier Augen eines Würfels ist die Sache etwas versteckter, weil der Begriff sich uns durch die Aehnlichkeit der Augen so unmittelbar aufdrängt, dass wir sein Dazwischentreten kaum bemerken. Die Zahl kann weder als selbständiger Gegenstand noch als Eigenschaft an einem äussern Dinge vorgestellt werden, weil sie weder etwas Sinnliches noch Eigenschaft eines äussern Dinges ist. Am deutlichsten ist die Sache wohl bei der Zahl 0. Man wird vergebens versuchen, sich 0 sichtbare Sterne vorzustellen. Zwar kann man sich den Himmel ganz mit Wolken überzogen denken; aber hierin ist nichts, was dem Worte »Stern« oder der 0 entspräche. Man stellt sich nur eine Sachlage vor, die zu dem Urtheile veranlassen kann: es ist jetzt kein Stern zu sehen.
§ 59. Jedes Wort erweckt vielleicht irgendeine Vorstellung in uns, sogar ein solches wie »nur«; aber sie braucht nicht dem Inhalte des Wortes zu entsprechen; sie kann in andern Menschen eine ganz andere sein. Man wird sich dann wohl eine Sachlage vorstellen, die zu einem Satze auffordert, in welchem das Wort vorkommt; oder es ruft etwa das gesprochene Wort das geschriebene ins Gedächtniss zurück.
Dies findet nicht nur bei Partikeln statt. Es unterliegt wohl keinem Zweifel, dass wir keine Vorstellung unserer Entfernung von der Sonne haben. Denn, wenn wir auch die Regel kennen, wie oft wir einen Maasstab vervielfältigen müssen, so misslingt doch jeder Versuch, nach dieser Regel uns ein Bild zu entwerfen, das auch nur einigermaassen dem Gewollten nahe kommt. Das ist aber kein Grund, die Richtigkeit der Rechnung zu bezweifeln, durch welche die Entfernung gefunden ist, und hindert uns in keiner Weise, weitere Schlüsse auf das Bestehen dieser Entfernung zu gründen.
§ 60. Selbst ein so concretes Ding wie die Erde können wir uns nicht so vorstellen, wie wir erkannt haben, dass es ist; sondern wir begnügen uns mit einer Kugel von mässiger Grösse, die uns als Zeichen für die Erde gilt; aber wir wissen, dass diese sehr davon verschieden ist. Obwohl nun unsere Vorstellung das Gewollte oft gar nicht trifft, so urtheilen wir doch mit grosser Sicherheit über einen Gegenstand wie die Erde auch da, wo die Grösse in Betracht kommt.
Wir werden durch das Denken gar oft über das Vorstellbare hinausgeführt, ohne damit die Unterlage für unsere Schlüsse zu verlieren. Wenn auch, wie es scheint, uns Menschen Denken ohne Vorstellungen unmöglich ist, so kann doch deren Zusammenhang mit dem Gedachten ganz äusserlich, willkührlich und conventionell sein.
Es ist also die Unvorstellbarkeit des Inhaltes eines Wortes kein Grund, ihm jede Bedeutung abzusprechen oder es vom Gebrauche auszuschliessen. Der Schein des Gegentheils entsteht wohl dadurch, dass wir die Wörter vereinzelt betrachten und nach ihrer Bedeutung fragen, für welche wir dann eine Vorstellung nehmen. So scheint ein Wort keinen Inhalt zu haben, für welches uns ein entsprechendes inneres Bild fehlt. Man muss aber immer einen vollständigen Satz ins Auge fassen. Nur in ihm haben die Wörter eigentlich eine Bedeutung. Die innern Bilder, die uns dabei etwa vorschweben, brauchen nicht den logischen Bestandtheilen des Urtheils zu entsprechen. Es genügt, wenn der Satz als Ganzes einen Sinn hat; dadurch erhalten auch seine Theile ihren Inhalt.
Diese Bemerkung scheint mir geeignet, auf manche schwierige Begriffe wie den des Unendlichkleinen[80] ein Licht zu werfen, und ihre Tragweite beschränkt sich wohl nicht auf die Mathematik.
Die Selbständigkeit, die ich für die Zahl in Anspruch nehme, soll nicht bedeuten, dass ein Zahlwort ausser dem Zusammenhange eines Satzes etwas bezeichne, sondern ich will damit nur dessen Gebrauch als Praedicat oder Attribut ausschliessen, wodurch seine Bedeutung etwas verändert wird.