V. Schluss.

§ 87. Ich hoffe in dieser Schrift wahrscheinlich gemacht zu haben, dass die arithmetischen Gesetze analytische Urtheile und folglich a priori sind. Demnach würde die Arithmetik nur eine weiter ausgebildete Logik, jeder arithmetische Satz ein logisches Gesetz, jedoch ein abgeleitetes sein. Die Anwendungen der Arithmetik zur Naturerklärung wären logische Bearbeitungen von beobachteten Thatsachen[99]; Rechnen wäre Schlussfolgern. Die Zahlgesetze werden nicht, wie Baumann[100] meint, eine praktische Bewährung nöthig haben, um in der Aussenwelt anwendbar zu sein; denn in der Aussenwelt, der Gesammtheit des Räumlichen, giebt es keine Begriffe, keine Eigenschaften der Begriffe, keine Zahlen. Also sind die Zahlgesetze nicht eigentlich auf die äussern Dinge anwendbar: sie sind nicht Naturgesetze. Wohl aber sind sie anwendbar auf Urtheile, die von Dingen der Aussenwelt gelten: sie sind Gesetze der Naturgesetze. Sie behaupten nicht einen Zusammenhang zwischen Naturerscheinungen, sondern einen solchen zwischen Urtheilen; und zu diesen gehören auch die Naturgesetze.

§ 88. Kant[101] hat den Werth der analytischen Urtheile offenbar – wohl in Folge einer zu engen Begriffsbestimmung – unterschätzt, obgleich ihm der hier benutzte weitere Begriff vorgeschwebt zu haben scheint[102]. Wenn man seine Definition zu Grunde legt, ist die Eintheilung in analytische und synthetische Urtheile nicht erschöpfend. Er denkt an den Fall des allgemein bejahenden Urtheils. Dann kann man von einem Subjectsbegriffe reden und fragen, ob der Prädicatsbegriff in ihm – zufolge der Definition – enthalten sei. Wie aber, wenn das Subject ein einzelner Gegenstand ist? wie, wenn es sich um ein Existentialurtheil handelt? Dann kann in diesem Sinne gar nicht von einem Subjectsbegriffe die Rede sein. Kant scheint den Begriff durch beigeordnete Merkmale bestimmt zu denken; das ist aber eine der am wenigsten fruchtbaren Begriffsbildungen. Wenn man die oben gegebenen Definitionen überblickt, so wird man kaum eine von der Art finden. Dasselbe gilt auch von den wirklich fruchtbaren Definitionen in der Mathematik z. B. der Stetigkeit einer Function. Wir haben da nicht eine Reihe beigeordneter Merkmale, sondern eine innigere, ich möchte sagen organischere Verbindung der Bestimmungen. Man kann sich den Unterschied durch ein geometrisches Bild anschaulich machen. Wenn man die Begriffe (oder ihre Umfänge) durch Bezirke einer Ebene darstellt, so entspricht dem durch beigeordnete Merkmale definirten Begriffe der Bezirk, welcher allen Bezirken der Merkmale gemeinsam ist; er wird durch Theile von deren Begrenzungen umschlossen. Bei einer solchen Definition handelt es sich also – im Bilde zu sprechen – darum, die schon gegebenen Linien in neuer Weise zur Abgrenzung eines Bezirks zu verwenden[103]. Aber dabei kommt nichts wesentlich Neues zum Vorschein. Die fruchtbareren Begriffsbestimmungen ziehen Grenzlinien, die noch gar nicht gegeben waren. Was sich aus ihnen schliessen lasse, ist nicht von vornherein zu übersehen; man holt dabei nicht einfach aus dem Kasten wieder heraus, was man hineingelegt hatte. Diese Folgerungen erweitern unsere Kenntnisse, und man sollte sie daher Kant zufolge für synthetisch halten; dennoch können sie rein logisch bewiesen werden und sind also analytisch. Sie sind in der That in den Definitionen enthalten, aber wie die Pflanze im Samen, nicht wie der Balken im Hause. Oft braucht man mehre Definitionen zum Beweise eines Satzes, der folglich in keiner einzelnen enthalten ist und doch aus allen zusammen rein logisch folgt.

§ 89. Ich muss auch der Allgemeinheit der Behauptung Kants[104] widersprechen: ohne Sinnlichkeit würde uns kein Gegenstand gegeben werden. Die Null, die Eins sind Gegenstände, die uns nicht sinnlich gegeben werden können. Auch Diejenigen, welche die kleineren Zahlen für anschaulich halten, werden doch einräumen müssen, dass ihnen keine der Zahlen, die grösser als 1000 (10001000) sind, anschaulich gegeben werden können, und dass wir dennoch Mancherlei von ihnen wissen. Vielleicht hat Kant das Wort »Gegenstand« in etwas anderm Sinne gebraucht; aber dann fallen die Null, die Eins, unser ∞₁ ganz aus seiner Betrachtung heraus; denn Begriffe sind sie auch nicht, und auch von Begriffen verlangt Kant[104], dass man ihnen den Gegenstand in der Anschauung beifüge.

Um nicht den Vorwurf einer kleinlichen Tadelsucht gegenüber einem Geiste auf mich zu laden, zu dem wir nur mit dankbarer Bewunderung aufblicken können, glaube ich auch die Uebereinstimmung hervorheben zu müssen, welche weit überwiegt. Um nur das hier zunächst Liegende zu berühren, sehe ich ein grosses Verdienst Kants darin, dass er die Unterscheidung von synthetischen und analytischen Urtheilen gemacht hat. Indem er die geometrischen Wahrheiten synthetisch und a priori nannte, hat er ihr wahres Wesen enthüllt. Und dies ist noch jetzt werth wiederholt zu werden, weil es noch oft verkannt wird. Wenn Kant sich hinsichtlich der Arithmetik geirrt hat, so thut das, glaube ich, seinem Verdienste keinen wesentlichen Eintrag. Ihm kam es darauf an, dass es synthetische Urtheile a priori giebt; ob sie nur in der Geometrie oder auch in der Arithmetik vorkommen, ist von geringerer Bedeutung.

§ 90. Ich erhebe nicht den Anspruch, die analytische Natur der arithmetischen Sätze mehr als wahrscheinlich gemacht zu haben, weil man immer noch zweifeln kann, ob ihr Beweis ganz aus rein logischen Gesetzen geführt werden könne, ob sich nicht irgendwo ein Beweisgrund andrer Art unvermerkt einmische. Dies Bedenken wird auch durch die Andeutungen nicht vollständig entkräftet, die ich für den Beweis einiger Sätze gegeben habe; es kann nur durch eine lückenlose Schlusskette gehoben werden, sodass kein Schritt geschieht, der nicht einer von wenigen als rein logisch anerkannten Schlussweisen gemäss ist. So ist bis jetzt kaum ein Beweis geführt worden, weil der Mathematiker zufrieden ist, wenn jeder Uebergang zu einem neuen Urtheile als richtig einleuchtet, ohne nach der Natur dieses Einleuchtens zu fragen, ob es logisch oder anschaulich sei. Ein solcher Fortschritt ist oft sehr zusammengesetzt und mehren einfachen Schlüssen gleichwerthig, neben welchen noch aus der Anschauung etwas einfliessen kann. Man geht sprungweise vor, und daraus entsteht die scheinbar überreiche Mannichfaltigkeit der Schlussweisen in der Mathematik; denn je grösser die Sprünge sind, desto vielfachere Combinationen aus einfachen Schlüssen und Anschauungsaxiomen können sie vertreten. Dennoch leuchtet uns ein solcher Uebergang oft unmittelbar ein, ohne dass uns die Zwischenstufen zum Bewusstsein kommen, und da er sich nicht als eine der anerkannten logischen Schlussweisen darstellt, sind wir sogleich bereit, dies Einleuchten für ein anschauliches und die erschlossene Wahrheit für eine synthetische zu halten, auch dann, wenn der Geltungsbereich offenbar über das Anschauliche hinausreicht.

Auf diesem Wege ist es nicht möglich, das auf Anschauung beruhende Synthetische von dem Analytischen rein zu scheiden. Es gelingt so auch nicht, die Axiome der Anschauung mit Sicherheit vollständig zusammenzustellen, sodass jeder mathematische Beweis allein aus diesen Axiomen nach den logischen Gesetzen geführt werden kann.

§ 91. Die Forderung ist also unabweisbar, alle Sprünge in der Schlussfolgerung zu vermeiden. Dass ihr so schwer zu genügen ist, liegt an der Langwierigkeit eines schrittweisen Vorgehens. Jeder nur etwas verwickeltere Beweis droht eine ungeheuerliche Länge anzunehmen. Dazu kommt, dass die übergrosse Mannichfaltigkeit der in der Sprache ausgeprägten logischen Formen es erschwert, einen Kreis von Schlussweisen abzugrenzen, der für alle Fälle genügt und leicht zu übersehen ist.

Um diese Uebelstände zu vermindern, habe ich meine Begriffsschrift erdacht. Sie soll grössere Kürze und Uebersichtlichkeit des Ausdrucks erzielen und sich in wenigen festen Formen nach Art einer Rechnung bewegen, sodass kein Uebergang gestattet wird, der nicht den ein für alle Mal aufgestellten Regeln gemäss ist[105]. Es kann sich dann kein Beweisgrund unbemerkt einschleichen. Ich habe so, ohne der Anschauung ein Axiom zu entlehnen, einen Satz bewiesen[106], den man beim ersten Blick für einen synthetischen halten möchte, welchen ich hier so aussprechen will:

Wenn die Beziehung jedes Gliedes einer Reihe zum nächstfolgenden eindeutig ist, und wenn m und y in dieser Reihe auf x folgen, so geht y dem m in dieser Reihe vorher oder fällt mit ihm zusammen oder folgt auf m.