sei gleichbedeutend mit

»n ist eine endliche Anzahl«.

Dann können wir den letzten Satz so ausdrücken: keine endliche Anzahl folgt in der natürlichen Zahlenreihe auf sich selber.

Unendliche Anzahlen.

§ 84. Den endlichen gegenüber stehen die unendlichen Anzahlen. Die Anzahl, welche dem Begriffe »endliche Anzahl« zukommt, ist eine unendliche. Bezeichnen wir sie etwa durch ∞₁! Wäre sie eine endliche, so könnte sie nicht auf sich selber in der natürlichen Zahlenreihe folgen. Man kann aber zeigen, dass ∞₁ das thut.

In der so erklärten unendlichen Anzahl ∞₁ liegt nichts irgendwie Geheimnissvolles oder Wunderbares. »Die Anzahl, welche dem Begriffe F zukommt, ist ∞₁« heisst nun nichts mehr und nichts weniger als: es giebt eine Beziehung, welche die unter den Begriff F fallenden Gegenstände den endlichen Anzahlen beiderseits eindeutig zuordnet. Dies ist nach unseren Erklärungen ein ganz klarer und unzweideutiger Sinn; und das genügt, um den Gebrauch des Zeichens ∞₁ zu rechtfertigen und ihm eine Bedeutung zu sichern. Dass wir uns keine Vorstellung von einer unendlichen Anzahl bilden können, ist ganz unerheblich und würde endliche Anzahlen ebenso treffen. Unsere Anzahl ∞₁ hat auf diese Weise etwas ebenso Bestimmtes wie irgendeine endliche: sie ist zweifellos als dieselbe wiederzuerkennen und von einer andern zu unterscheiden.

§ 85. Vor Kurzem hat G. Cantor in einer bemerkenswerthen Schrift[97] unendliche Anzahlen eingeführt. Ich stimme ihm durchaus in der Würdigung der Ansicht bei, welche überhaupt nur die endlichen Anzahlen als wirklich gelten lassen will. Sinnlich wahrnehmbar und räumlich sind weder diese noch die Brüche, noch die negativen, irrationalen und complexen Zahlen; und wenn man wirklich nennt, was auf die Sinne wirkt, oder was wenigstens Wirkungen hat, die Sinneswahrnehmungen zur nähern oder entferntern Folge haben können, so ist freilich keine dieser Zahlen wirklich. Aber wir brauchen auch solche Wahrnehmungen gar nicht als Beweisgründe für unsere Lehrsätze. Einen Namen oder ein Zeichen, das logisch einwurfsfrei eingeführt ist, können wir in unsern Untersuchungen ohne Scheu gebrauchen, und so ist unsere Anzahl ∞₁ so gerechtfertigt wie die Zwei oder die Drei.

Indem ich hierin, wie ich glaube, mit Cantor übereinstimme, weiche ich doch in der Benennung etwas von ihm ab. Meine Anzahl nennt er »Mächtigkeit,« während sein Begriff[98] der Anzahl auf die Anordnung Bezug nimmt. Für endliche Anzahlen ergiebt sich freilich doch eine Unabhängigkeit von der Reihenfolge, dagegen nicht für unendlichgrosse. Nun enthält der Sprachgebrauch des Wortes »Anzahl« und der Frage »wieviele?« keine Hinweisung auf eine bestimmte Anordnung. Cantors Anzahl antwortet vielmehr auf die Frage: »das wievielste Glied in der Succession ist das Endglied?« Darum scheint mir meine Benennung besser mit dem Sprachgebrauche übereinzustimmen. Wenn man die Bedeutung eines Wortes erweitert, so wird man darauf zu achten haben, dass möglichst viele allgemeine Sätze ihre Geltung behalten und zumal so grundlegende, wie für die Anzahl die Unabhängigkeit von der Reihenfolge ist. Wir haben gar keine Erweiterung nöthig gehabt, weil unser Begriff der Anzahl sofort auch unendliche Zahlen umfasst.

§ 86. Um seine unendlichen Anzahlen zu gewinnen, führt Cantor den Beziehungsbegriff des Folgens in einer Succession ein, der von meinem »Folgen in einer Reihe« abweicht. Nach ihm würde z. B. eine Succession entstehen, wenn man die endlichen positiven ganzen Zahlen so anordnete, dass die unpaaren in ihrer natürlichen Reihenfolge für sich und ebenso die paaren unter sich auf einander folgten, ferner festgesetzt wäre, dass jede paare auf jede unpaare folgen solle. In dieser Succession würde z. B. 0 auf 13 folgen. Es wurde aber keine Zahl unmittelbar der 0 vorhergehen. Dies ist nun ein Fall, der in dem von mir definirten Folgen in der Reihe nicht vorkommen kann. Man kann streng beweisen, ohne ein Axiom der Anschauung zu benutzen, dass wenn y auf x in der φ-Reihe folgt, es einen Gegenstand giebt, der in dieser Reihe dem y unmittelbar vorhergeht. Mir scheinen nun genaue Definitionen des Folgens in der Succession und der cantorschen Anzahl noch zu fehlen. So beruft sich Cantor auf die etwas geheimnissvolle »innere Anschauung,« wo ein Beweis aus Definitionen anzustreben und wohl auch möglich wäre. Denn ich glaube vorauszusehen, wie sich jene Begriffe bestimmen liessen. Jedenfalls will ich durch diese Bemerkungen, deren Berechtigung und Fruchtbarkeit durchaus nicht angreifen. Im Gegentheil begrüsse ich in diesen Untersuchungen eine Erweiterung der Wissenschaft besonders deshalb, weil durch sie ein rein arithmetischer Weg zu höhern unendlichgrossen Anzahlen (Mächtigkeiten) gebahnt ist.