Fig. 19.

Aus jenem Gesez folgt zunächst, dass nur eine Fläche, welche ganz gerade vor uns steht, d. h. senkrecht und parallel mit unserer Augenlinie, wie die Fläche A [Fig. 19], dem Auge genau so erscheinen kann, wie sie in Wirklichkeit ist, mit andern Worten so, dass die perspectivische Richtung und das perspectivische Grössenverhältnis ihrer Umrisse und aller in ihr liegenden Linien mit deren geometrischer Richtung und Länge übereinstimmt. Denn in diesem Fall befinden sich sämtliche Teile der Fläche in gleicher Entfernung vom Auge (in gleicher Tiefe). Sobald wir die Tafel A, während unser Standpunkt derselbe bleibt, nach irgend einer Seite wenden, so liegen einzelne Teile derselben in ungleicher Tiefe; die ferneren Teile erscheinen infolge dessen verhältnismässig kleiner, als die näheren und die perspectivische Form der ganzen Tafel wird hiedurch eine von ihrer geometrischen Form verschiedene. In B ist z. B. die Linie b c ferner als a d, jene erscheint daher kürzer als diese, folglich können die geometrisch parallelen Linien a b und d c nicht mehr parallel und sie können nicht mehr beide rechtwinklig zu a d und b c erscheinen. Wird die Tafel B in mehrere gleich grosse senkrechte Streifen geteilt, so erscheinen diese nach der Linie b c hin allmälig kleiner zu werden, die ganze Fläche erscheint daher schmaler als bei der Stellung A, vgl. [Fig. 11].

[§ 22.] Wenn eine Fläche oder Linie eine solche Stellung zum Auge hat (unser Standpunkt zu ihr ein solcher ist), dass sämtliche Teile derselben in gleicher Tiefe liegen, wie in [Fig. 19] A und die an A befindlichen Linien, so nennt man dies die unverkürzte Stellung; eine Fläche oder Linie ist dagegen verkürzt, wenn einzelne Teile derselben dem Auge näher, andere ferner liegen. Unverkürzt sind also in [Fig. 19] die Flächen A und G, sämtliche senkrechte Linien, die wagrechten Linien a b und c d in A und D, a e in G, die schrägen Linien a c und b d in A, a d und b c in E. Alle übrigen Flächen und Linien sind verkürzt. (Man bemerke, dass zwar die schräge Fläche E verkürzt ist, da b c ferner liegt als a d, die schrägen Linien a d und b c aber in E unverkürzt sind, indem ihre beiden Endpunkte in gleicher Tiefe liegen).

Die senkrechten Linien haben immer unverkürzte Stellung, da ihre beiden Endpunkte immer in gleicher Tiefe liegen. Eine senkrechte Fläche dagegen kann sowohl verkürzt sein wie B, als unverkürzt wie A.

Die unverkürzten wagrechten Linien eines Bildes sind parallel mit unserer Augenlinie und mit dem Horizont, folglich auch parallel unter sich. Wagrechte und schräge Flächen sind stets verkürzt.

[§ 23.] Für Anfänger ist es zweckmässig, einen Bleistift, ein Lineal oder dergl. in der für die Zeichnung angenommenen Richtung der Augenlinie und des Horizonts vor sich zu legen, um mit dieser Normallinie die verschiedenen wagrechten Linien des Gegenstands vergleichen und leichter unterscheiden zu können, ob sie unverkürzt oder verkürzt sind.

Sollte man in Betreff einer schrägen Linie im Zweifel sein, ob sie unverkürzt oder verkürzt ist, so denke man sich dieselbe mit einer senkrechten und einer wagrechten Linie zu einem Dreieck verbunden, wie in G die schräge Linie a d mit a e und e d oder in F die Linie b c mit b e und e c. Man nennt dies das Massdreieck einer schrägen Linie. Ist die wagrechte Linie dieses Dreiecks unverkürzt, wie a e in G, so ist es auch die schräge; ist erstere verkürzt, wie b e in F, so ist auch die schräge Linie verkürzt.

[§ 24.] Unverkürzte Linien, welche in gleicher Tiefe (in Einer unverkürzten senkrechten Fläche) liegen, wie sämtliche Linien der Fläche A [Fig. 19], behalten ihre geometrische Richtung und ihr geometrisches Grössenverhältnis; sie erscheinen und werden gezeichnet wie sie in Wirklichkeit sind; unverkürzte Linien in ungleicher Tiefe, wie a d und b c in B, b c und a d in E, behalten ihre geometrische Richtung, nicht aber ihr geometrisches Grössenverhältnis (indem die ferneren kleiner erscheinen); die perspectivische Länge der verkürzten Linien ist immer, ihre perspectivische Richtung in den meisten Fällen verschieden von ihrer geometrischen Richtung und Länge.

Wo die geometrische Richtung oder Länge einer Linie unverändert bleibt, muss dieselbe entweder nach dem Augenmass oder mit Hilfe von Lineal und Zirkel bestimmt werden. Wir bedürfen für solche Fälle keiner perspectivischen Regel und Berechnung.