Oder können von 2 beliebigen Punkten der zuerst gezeichneten Wagrechten 2 Senkrechte bis zum Horizont gezogen und beide in eine gleiche Zahl von gleich grossen Teilen geteilt werden wie in [Fig. 30] A P, B G und C F in je 4 Teile geteilt sind. Durch die Verbindung der entsprechenden Teilungspunkte erhält man perspectivische Parallellinien, zwischen welchen dann weitere gezogen werden können, vgl. [Fig. 75] die Teilung von A D und B C in je 9 Teile. Je nach Bedürfnis kann sodann dieselbe Einteilung nach oben oder unten in der Verlängerung jener Senkrechten fortgesezt werden.
Ein weiteres Verfahren, die Richtung verkürzter Parallellinien ohne Hilfe ihres Fluchtpunkts zu bestimmen, ist in [§ 70] angegeben.
Verkürzte schräge Linien.
[§ 41.] In [Fig. 36] ist a c eine nach der Ferne hin steigende, a g eine dorthin fallende Linie. (Wenn im Folgenden von fallenden oder steigenden Linien die Rede ist, so sind immer Linien gemeint, welche in Wirklichkeit oder geometrisch nach der Ferne hin fallen oder steigen). Bilden wir das Massdreieck dieser Linien (vgl. [§ 23]) mittels der Wagrechten a b und der 2 Senkrechten b c und b g, so ist klar, dass eine steigende Linie wie a c, soweit man sie verlängern mag, niemals einen Punkt treffen kann, der unterhalb der wagrechten Linie ihres Massdreiecks oder deren Verlängerung liegt und ebenso wenig eine fallende Linie wie a g einen Punkt, der über jener Wagrechten liegt.
Also liegt der Fluchtpunkt einer verkürzten schrägen Linie oberhalb des Horizonts, wenn sie nach der Ferne hin steigt, unterhalb des Horizonts, wenn sie nach der Ferne hin fällt; vgl. die steigenden und fallenden Linien in [Fig. 37].
[§ 42.] Es kann vorkommen, dass gemäss dieser Regel eine steigende Linie so gezeichnet werden muss, dass ihr fernerer Endpunkt tiefer liegt als der nähere, vgl. a c [Fig. 34]. Häufiger ist der umgekehrte Fall, dass Linien, welche in Wirklichkeit nach der Ferne hin fallen, perspectivisch nach dorthin steigen, wie a b und c d [Fig. 35].
Fig. 34.
In solchen Fällen ist es nötig, durch Hervorheben von geometrisch wagrechten Linien der nächsten Umgebung, welche zu den betreffenden schrägen Linien einen sichtbaren Gegensaz bilden, die Wirkung der lezteren zu unterstüzen, damit sie mit hinreichender Deutlichkeit das ausdrücken, was sie sein sollen. In [Fig. 34] sind es z. B. die Balken der rechten Seite, in [Fig. 35] die wagrechten Fugenlinien der anstossenden Mauer, welche es dem Beschauer deutlich machen, dass a c dort eine in Wirklichkeit von a nach c steigende, a b in [Fig. 35] eine nach b fallende Linie ist.