[§ 73.] Ein anderes Verfahren ist das folgende: Wenn in [Fig. 73] das Rechteck a b c d gegeben ist und die Breite eines in der Mitte davon zu zeichnenden Fensters ⅕ der Linie a d betragen soll, so wird a b in 5 gleiche Teile geteilt und die Diagonale a c oder b d gezogen. Zieht man nun von g und h Linien parallel mit a d und b c, so erhält man da, wo dieselben die Diagonalen schneiden, die Punkte, welche die Breite des Fensters bestimmen, vergl. die geometrische Figur. Auch die perspectivische Breite der Fenster und der Zwischenräume in [Fig. 75] könnte dadurch bestimmt werden, dass A D mit dem Zirkel in 9 gleiche Teile geteilt würde (vorausgesezt, dass das oben angegebene Verhältnis massgebend sein soll). Die Punkte, in welchen die von 1, 3, 4, 6 und 7 aus gezogenen Parallelen die Diagonale D B schneiden, ergeben, wie die Figur zeigt, dasselbe Verhältnis wie die obige Berechnung.
Perspectivisches Grössenverhältnis nicht paralleler Linien.
[§ 74.] Wenn wir uns von unserem Auge eine Linie nach dem Augpunkt und 2 andere nach den beiden Diagonalpunkten ([§ 18]) gezogen denken, so entstehen 2 gleichschenklige rechtwinklige Dreiecke. Denn eine Linie vom Auge nach dem Augpunkt steht zum Horizont in einem rechten Winkel und die Entfernung der Diagonalpunkte vom Augpunkt ist gleich der Entfernung des Auges vom Augpunkt. Wenn in [Fig. 76] D unser Auge, P der Augpunkt ist, so sind Dp und Dg Diagonalpunkte.
Fig. 76.
Die beiden Linien vom Auge nach den Diagonalpunkten – D Dp und D Dg – stehen zum Horizont in einem halben rechten Winkel, wie die Diagonalen eines Quadrats zu dessen Seiten, vergl. a b c d. Steht eine Linie unseres Gegenstands in einem halben rechten Winkel zu einer unverkürzten Wagrechten, so steht sie auch zum Horizont in einem halben rechten Winkel, sie ist also parallel mit einer Linie von unserem Auge nach einem der beiden Diagonalpunkte und dieser muss ihr Fluchtpunkt sein. Die Diagonalpunkte sind also die Fluchtpunkte aller wagrechten Linien, welche zu einer unverkürzten Wagrechten in einem halben rechten Winkel stehen.
Umgekehrt, jede Linie des Bildes, deren Fluchtpunkt ein Diagonalpunkt ist, stellt eine Linie dar, welche zum Horizont und zu den unverkürzten Wagrechten derselben Zeichnung in einem halben rechten Winkel steht.
Ist also in [Fig. 77] die Distanz = 2 mal A P = P Dg, so ist Dg ein Diagonalpunkt und stellt A C eine Linie dar, welche in einem halben rechten Winkel zu A B steht; die Linie B C, welche ihren Fluchtpunkt im Augpunkt hat, ist demnach eine rechtwinklig zu A B stehende Linie und A B C ist die perspectivische Form eines gleichschenkligen rechtwinkligen Dreiecks = a b c [Fig. 76]. B C [Fig. 77] ist = A B, wie in [Fig. 76] b c = a b ist.