Fig. 16.
§ 15. Schnittpunkt einer Geraden mit einer Ebene. Man legt durch die gegebene Gerade g ([Fig. 16]) eine beliebige Hilfsebene, von der irgend zwei Streichlinien genügen, und ermittelt deren Schnittpunkte mit den gleichkotierten Schichtlinien der gegebenen Ebene; damit ist die Schnittgerade s beider Ebenen bestimmt, und dadurch der gesuchte Punkt P als Schnittpunkt von s mit g. Sind die Schnittgerade und die gegebene Gerade einander parallel, wie in der Figur s1 und g1, so ist auch die gegebene Gerade der Ebene parallel; der Gefällemaßstab der Geraden kann durch Parallelverschiebung mit demjenigen zur Deckung gebracht werden, den die Streichlinien der Ebene auf ihr ausschneiden.
Um den Abstand der Ebene von der parallelen Geraden zu bestimmen, ist nur von irgendeinem ihrer Punkte ein Lot auf die Ebene zu fällen und dessen Länge zu ermitteln, wie das sogleich gezeigt werden wird.
§ 16. Lot von einem Punkte auf eine Ebene. Man legt durch den gegebenen Punkt P ([Fig. 17]) eine Vertikalebene, die zugleich auf der gegebenen senkrecht steht, sie demnach in einer Fallinie, also in einer Parallelen zum gegebenen Gefällemaßstab e der Ebene schneidet. Das gesuchte Lot steht auf dieser Fallinie senkrecht; nach [§ 6] ist demnach seine Graduierung entgegengesetzt und sein Intervall i reziprok zu dem des Gefällemaßstabes e, also aus dem in der Figur angegebenen Dreieck ABC zu entnehmen. Das gestufte Lot l stellt zugleich den Gefällemaßstab einer Ebene dar, die die gegebene längs einer Schichtlinie schneidet, nämlich derjenigen, die durch den Fußpunkt F des Lotes geht. Man zeichnet diese nach [§ 13], [Fig. 14] und danach die wahre Lotlänge FQ nach [§ 1], wobei in der Figur PR die Höheneinheit ist.
Fig. 17.
Fig. 18.
Zur Konstruktion des Fußpunktes des Lotes ist übrigens nur erforderlich, seinen Durchschnittspunkt mit der Ebene wie oben ([§ 15]) zu ermitteln.
§ 17. Kürzester Abstand zweier windschiefer Geraden. Wenn man ([Fig. 18]) durch die eine, g1, der beiden gegebenen windschiefen Geraden eine Ebene parallel zur anderen, g2, legt und sodann von irgendeinem Punkte C der Geraden g2 das Lot CD auf diese Ebene fällt, so hat CD dieselbe Länge wie der gesuchte kürzeste Abstand selbst. Wenn man ferner in der Ebene durch D die Parallele zu g2 zieht, so schneidet sie g1 im Punkte A, dem einen Endpunkte des gesuchten kürzesten Abstandes; der andere, B, liegt auf g2 als Schnittpunkt des in A auf der Ebene errichteten Lotes AB. Die Konstruktion ist danach folgendermaßen: Man legt durch einen beliebigen Punkt (1) der einen Geraden g1 eine Parallele p zur zweiten g2, so daß also p und g2 gleiche Stufungen haben. Durch p und g1 ist eine zu g2 parallele Ebene bestimmt, deren Schichtlinien sich durch Verbindung gleichkotierter Punkte von p und g1 ergeben; e sei ihr Gefällemaßstab. Nun fällt man von irgendeinem Punkte C (= 3) von g2 das Lot CD auf diese Ebene, entsprechend dem Vorhergehenden: das Dreieck mit dem rechten Winkel bei H, dessen Höhe gleich der Einheit des Höhenmaßstabes ist, liefert das (in der Figur stark ausgezogene) Intervall, das zu dem von e reziprok ist, und mit dem die durch C parallel zu e gezogene Gerade q entgegengesetzt zu e graduiert wird; vom Schnittpunkt S der Verbindungsgeraden 2–2, 4–4 gleichkotierter Punkte auf q und e ist die Senkrechte SD auf q gefällt, die den Fußpunkt D des gesuchten Lotes ergibt. Durch ihn zieht man die Parallele zu g2, die g1 im Fußpunkt A des gesuchten kürzesten Abstandes schneidet. Den anderen Endpunkt B findet man durch AB || CD.