Fig. 96.
Besonders wichtig ist die Konstruktion der Skale für die linear gebrochene Funktion
y = ax + b/cx + d,
wo a, b, c, d vier Konstanten sind, von denen es ersichtlich genügt, die drei Verhältnisse a : b : c : d zu kennen. Wenn c = 0, so würde die Funktion eine ganze lineare sein, ihre Skale also gleichmäßig geteilt. Wenn c ≠ 0, aber ad – bc = 0, wäre die Funktion gar nur eine Konstante, wie sofort aus dem Ausdruck
y = a/c + ad – bc/c(cx + d)
folgt, in den man die Funktion überführen kann. Sieht man von diesen Ausnahmefällen ab, und bezeichnet man mit y1, y2, y3, y die vier zu x1, x2, x3, x gehörigen Funktionswerte, so ist – man kann sich davon durch Ausrechnung leicht überzeugen –
y2 – y1/y3 – y1 : y2 – y/y3 – y = x2 – x1/x3 – x1 : x2 – x/x3 – x,
d. h. die Doppelverhältnisse von je vier Werten von x und den zugehörigen Werten von y sind einander gleich, und daraus folgt bekanntlich, daß die Punktreihe P1, P2, P3, P mit den Abszissen x1, x2, x3, x auf einer Geraden I aus der Punktreihe Q1, Q2, Q3, Q mit den Abszissen y1, y2, y3, y auf einer Geraden II durch Projizieren gewonnen werden kann ([Fig. 97]). Zur Konstruktion einer projektiven Skale y = (ax + b) : (cx + d) kann man also folgendermaßen verfahren. Gegeben sei der Träger der Skale, die Gerade II, ferner der Anfangspunkt der Skale, d. h. der Punkt mit dem Teilstrich 0, und der Maßstab, wodurch zugleich der Punkt mit dem Teilstrich 1 der Skale bestimmt ist. Nunmehr zeichnet man auf einer beliebigen Geraden I irgendeine gleichmäßige Teilung. Man verbindet sodann miteinander die Punkte der Teilstriche 0 und ebenso die Punkte der Teilstriche 1. Der Schnittpunkt S dieser Verbindungsgeraden ist der Mittelpunkt des Strahlbüschels, das die Skale I auf die Skale II projiziert. ([Fig. 98].) Natürlich gibt es auf einer Geraden unzählig viele projektive Skalen mit denselben Punkten 0 und 1; denn eine projektive Skale ist erst durch die Angabe von drei Punkten eindeutig bestimmt, entsprechend den drei Konstantenverhältnissen a : b : c : d.
Fig. 97.