A large amount of pure inorganic research on arsine and arsenides, fluorine, hydrofluoric acid and fluorides, cyanides, cyanogen sulfide and nitrogen tetroxide was carried out, sometimes successfully and at other times with little or no success.

The Analytical Section not only carried out all routine analyses but developed methods for many new gases.

The Offense Section worked in very close contact with the Small Scale Manufacturing Section (Chemical Production Section). Often it happened that a method, apparently successful in the laboratory, was of no value in the plant. Small scale plants were developed for mustard gas, hydrocyanic acid, cyanogen chloride, arsenic trichloride, arsenic trifluoride, magnesium arsenide, superpalite and bromobenzylcyanide.

The Chemical Defense Section, organized January, 1918, was occupied with problems relating to protection, such as charcoal, soda-lime, and special absorbents, eyepieces, smoke filters, efficiency of absorbents, and special work with mustard gas.

Charcoal demanded extensive research. Raw materials required a world-wide search, carbonizing methods had to be developed, and impregnating agents were thoroughly studied. This story is told in [Chapter XIII].

Soda-lime was likewise a difficult problem. Starting with the British formula, the influence of the various factors was studied and a balance between a number of desirable qualities, absorptive activity, capacity, hardness, resistance to abrasion, chemical stability, etc., obtained. The final product consisted of a mixture of lime, cement, kieselguhr, sodium permanganate and sodium hydroxide.

Equally valuable work was performed in the perfection of two carbon monoxide absorbents for the Navy. The better of these consisted of a mixture of suitably prepared oxides which acts catalytically under certain conditions, and causes the carbon monoxide to react with the oxygen of the air. Since there are color changes connected with the iodine pentoxide reaction (the first absorbent) it has been possible to develop this so as to serve as a very sensitive detector for the presence of carbon monoxide in air.

While the question of smoke filters was so important that it occupied the attention of several Sections, the Defense Section developed, as a part of its work, a standard method of testing and comparing filters, and did a great deal of work on the preparation of paper for this purpose.

Various problems related to mustard gas were also studied. The question of a protective ointment was solved as successfully as possible under the circumstances, but was dropped when it appeared doubtful if under battlefield conditions of concentration and length of exposure, any ointment offered sufficient protection to pay for the trouble of applying it. The removal of mustard gas from clothing was investigated, especially by the accelerating effect of turkey red oil. Another phase of the work concerned the destruction of mustard gas on the ground, while a fourth phase related to the persistency of mustard (and other gases) on the field of battle.

The Gas Mask Research Section concerned itself largely with developing methods of testing canisters and with routine tests. When one considers the number of gases studied experimentally, the large number of experimental canisters developed, all of which were tested against two or more gases, and further that the Section assisted in the control of the production at Long Island City, it is seen that this was no small job. In addition, the effect of various conditions, such as temperature, humidity, ageing, size of particles, were studied in their relation to the life of absorbents and canisters. Man tests and mechanical tests will be discussed in a later chapter. Other studies were concerned with weathering tests of gas mask fabrics, mustard gas detector, and covering for dugout entrances (dugout blankets), which were impregnated with a mixture of mineral and vegetable oils. In studying the course of gases through a canister the “wave front” method was of great value in detecting defects in canister design and filling.