The atmosphere.From observations on the twilight, the elasticity of aerial bodies, and the condensing action of cold, the conclusion previously arrived at by Alhazen was established, that the atmosphere does not extend unlimitedly into space. Its height is considered to be about forty-five miles. From its compressibility, the greater part of it is within a much smaller limit; were it of uniform density, it would not extend more than 29,000 feet. Hence, comparing it with the dimensions of the earth, it is an insignificant aerial shell, in thickness not the eightieth part of the distance to the earth's centre, and its immensity altogether an illusion. It bears about the same proportion to the earth, that the down upon a peach bears to the peach itself.
A foundation for the mechanical theory of the atmosphere [368] was laid as soon as just ideas respecting liquid pressures, as formerly taught by Archimedes, were restored, the conditions of vertical and oblique pressures investigated, the demonstration of equality of pressures in all directions given, and the proof furnished that the force of a liquid on the bottom of a vessel may be very much greater than its weight.
Its mechanical relations.Such of these conclusions as were applicable were soon transferred to the case of aerial bodies. The weight of the atmosphere was demonstrated, its pressure illustrated and measured; then came the dispute about the action of pumps, and the overthrow of the Aristotelian doctrine of the horror of a vacuum. Coincidently occurred the invention of the barometer, and the proof of its true theory, both on a steeple in Paris and on a mountain in Auvergne. The invention of the air-pump, and its beautiful illustrations of the properties of the atmosphere, extended in a singular manner the taste for natural philosophy.
Its chemical relations.The mechanics of the air was soon followed by its chemistry. From remote ages it had been numbered among the elements, though considered liable to vitiation or foulness. The great discovery of oxygen gas placed its chemical relations in their proper position. One after another, other gases, both simple and compound, were discovered. Then it was recognized that the atmosphere is the common receptacle for all gases and vapours, and the problem whether, in the course of ages, it has ever undergone change in its constitution arose for solution.
The antagonism of animals and plants.The negative determination of that problem, so far as a few thousand years are concerned, was necessarily followed by a recognition of the antagonism of animals and plants, and their mutually balancing each other, the latter accomplishing their duty under the influence of the sun, though he is a hundred millions of miles distant. From this it appeared that it is not by incessant interventions that the sum total of animal life is adjusted to that of vegetable, but that, in this respect, the system of government of the world is by the operation of natural causes and law, a conclusion the more imposing since it contemplates all living things, [369] and includes even man himself. The detail of these investigations proved that the organic substance of plants is condensed from the inorganic air to which that of all animals returns, the particles running in ever-repeating cycles, now in the air, now in plants, now in animals, now in the air again, the impulse of movement being in the sun, from whom has come the force incorporated in plant tissues, and eventually disengaged in our fires, shining in our flames, oppressing us in fevers, and surprising us in blushes.
The winds; their origin and nature.Organic disturbances by respiration and the growth of plants being in the lowest stratum of the air, its uniformity of composition would be impossible were it not for the agency of the winds and the diffusion of gases, which it was found would take place under any pressure. The winds were at length properly referred to the influence of the sun, whose heat warms the air, causing it to ascend, while other portions flow in below. The explanation of land and sea breezes was given, and in the trade-wind was found a proof of the rotation of the earth. At a later period followed the explanation of monsoons in the alternate heating and cooling of Asia and Africa on opposite sides of the line, and of tornadoes, which are disks of air rotating round a translated axis with a diameter of one hundred or one hundred and fifty miles, the axis moving in a curvilinear track with a progressive advance of twenty or twenty-five miles an hour, and the motions being in opposite directions in opposite hemispheres of the globe.
The equatorial calms and trade-winds accounted for on physical principles, it was admitted that the winds of high latitudes, proverbially uncertain as they are, depend in like manner on physical causes.
With these palpable movements there are others of a less obvious kind. Through the air, and by reason of motions in it, sounds are transmitted to us.
Of sounds; their velocity.The Alexandrian mathematicians made sound a favourite study. Modern acoustics arose from the recognition that there is nothing issuing from the sounding body, but that its parts are vibrating and affecting the medium between it and the ear. Not [370] only by the air-pump, but also by observations in the rare atmosphere of the upper regions, it was shown that the intensity of sound depends upon the density. On the top of a mountain the report of a pistol is no louder than that of a cracker in the valley. As to the gradual propagation of sounds, it was impossible to observe fire-arms discharged at a distance without noticing that the flash appears longer before the report in proportion as the distance is greater. The Florentine academicians attempted a determination of the velocity, and found it to be 1148 feet in a second. More accurate and recent experiments made it 1089·42 feet at the freezing-point of water; but the velocity, though independent of the density, increases with the temperature at the rate of 1·14 foot for each degree. For other media the rate is different; for water, about 4687 feet in a second, and in cast iron about 10 ½ times greater than in air. All sounds, irrespective of their note or intensity, move at the same velocity, the medium itself being motionless in the mass. No sound can pass through a vacuum. The sudden aerial condensation attending the propagation of a sound gives rise to a momentary evolution of heat, which increases the elasticity of the air, and hence the velocity is higher than 916 feet in a second, otherwise the theoretical rate.
Acoustic phenomena.Turning from soniferous media to sounding bodies, it was shown that the difference between acute and grave sounds depends on the frequency of vibration. The ear can not perceive a sound originating in less than thirty-two vibrations in a second, nor one of more than 24,000. The actual number of vibrations in a given note was counted by means of revolving wheels and other contrivances. I have not space to relate the investigation of many other acoustic facts, the reference of sounds to phases of condensation, and rarefaction in the elastic medium taking place in a normal direction; the affections of note, intensity, quality; the passage in curved lines and around obstacles; the production of sympathetic sounds; nodal points; the effect of reeds; the phenomena of pipes and flutes, and other wind instruments; the various vibrations of solids, as bells; or of membranes, as drums; visible acoustic lines; the reflexion of [371] undulations by surfaces of various forms; their interferences, so that, no matter how intense they may be individually, they can be caused to produce silence; nor of whispering galleries, echoes, the nature of articulate sounds, the physiology of the vocal and auditory organs of man, and the construction of speaking machines.