Nevertheless, he hesitated long before definitely engaging himself in this direction. 'I am neither doctor nor surgeon,' he used to repeat with modest self-distrust. But the moment came when, notwithstanding all his scruples, he could no longer be content himself to play the part of a simple spectator of the labours started by his studies on fermentation, on spontaneous generation, and on the diseases of wines and beer. The hopes to which his methods gave rise, the eulogies of which they were the object, obliged him to go forward. In February 1876 Tyndall wrote to him thus:—
'In taking up your researches relating to infusorial organisms, I have had occasion to refresh my memory of your labours; they have revived in me all the admiration which I felt on first reading them. It is my intention to follow up these researches until I shall have dissipated every doubt that has been raised as to the unassailable exactitude of your conclusions.
'For the first time in the history of science we are able to entertain the sure and certain hope that, in relation to epidemic diseases, medicine will soon be delivered from empiricism, and placed upon a real scientific basis. When this great day shall come, humanity will recognise that it is to you the greatest part of its gratitude is due.'
Pasteur approached the study of viruses by seeking to penetrate into all the causes of the terrible malady called splenic fever (charbon, Germ. Milzbrand). Each year this disease decimates the flocks not only in France but in Spain, in Italy, in Russia, where it is called the Siberian plague, and in Egypt, where it is supposed to date back to the ten plagues of Moses. Hungary and Brazil pay it a formidable yearly tribute; and to come back to France, the losses have amounted in certain years to from fifteen to twenty millions of francs. For centuries the cause of this pest has eluded all research; and further, as the malady did not always exhibit the same symptoms, but varied according to the kind of animal that was smitten by it, the disease was supposed to vary with the species that was attacked by it. The splenic fever of the horse was distinct from that of the cow; the splenic fever of horse and cow were again different from that of the sheep. In the latter, splenic fever was called sang-de-rate; in the cow, it was maladie du sang; in the horse, splenic fever; in man, malignant pustule.
It was not until 1850 that trustworthy data were first collected regarding the nature of the malady, its identity with and difference from other maladies. From 1849 to 1852 a commission of the Medical Association of Eure-et-Loir made a great number of inoculations, applied other tests, and proved that the splenic fever of the sheep is communicable to other sheep, to the horse, to the cow, and to the rabbit; that the splenic fever of the horse is communicable to the horse and to the sheep; that the splenic fever of the cow is communicable to the sheep, to the horse, and to the rabbit. As for the malignant pustule in man, no doubt remained that it must arise from the same cause as splenic fever in animals. What class of men is it that the malignant pustule most frequently attacks? Shepherds, cowherds, cattle breeders, farm servants, dealers in hides, tanners, wool cleaners, knackers, butchers—all who derive their living from domestic animals. In handling contaminated subjects the slightest excoriation or scratch of the skin is sufficient to allow the virus to enter. When others besides the class that we have named become infected, it is because they live in the neighbourhood of herds smitten with splenic fever. There are also certain flies which transport the virus. Suppose one of these flies to have sucked the blood of an animal which has died of splenic fever, a person stung by that fly is forthwith inoculated with the virus.
At the very time (1850) when these first experiments were being made by the Medical Association of the Eure-et-Loir, Dr. Rayer, giving an account in the 'Bulletin de la Société de Biologie de Paris' of the researches he had made, with his colleague, Dr. Davaine, on the contagion of splenic fever, wrote:—'In the blood are found little thread-like bodies about twice the length of a blood corpuscle. These little bodies exhibit no spontaneous motion.'
This is the date of the first observation on the presence of little parasitic bodies in splenic fever, but, strange to say, no attention was paid to these minute filaments. Rayer and Davaine also paid no attention to them. This indifference lasted for thirteen years; it would have lasted longer still, if the parasitic origin of communicable diseases had not been brought before the mind by each new publication of Pasteur's. From 1857 to 1860 it will be remembered that he had demonstrated lactic fermentation, like alcoholic fermentation, to be the work of a living ferment; in 1861 he had discovered that the agent of butyric fermentation consisted of little moving thread-like bodies, of dimensions similar to those of the filaments discovered by Davaine and Rayer in the blood of splenic fever patients; in 1861 he had announced that no ammoniacal urine existed without the presence of a microscopic organism; in 1863 he had established that the bodies of animals in full health are sealed against the introduction of the germs of microscopic organisms; that blood drawn with sufficient precaution from the veins and the arteries, and urine taken direct from the bladder, could be exposed to the contact of pure air without putrefaction, and without the appearance of living thread-like organisms of any kind whatever, mobile or immobile. It was all these facts which in 1863 brought back the attention of Davaine, as he himself has acknowledged, to the observation which he had made in 1850.
'M. Pasteur,' said M. Davaine in a communication made to the Academy of Sciences, 'published some time ago a remarkable memoir on butyric fermentation, which consists of little cylindrical rods, possessing all the characteristics of vibrios or of bacteria. The thread-like corpuscles which in 1850 I saw in the blood of sheep attacked with sang-de-rate, having a great analogy with these vibrios, I was led to examine whether filiform corpuscles, analogous to or of the same kind as those which determined the butyric fermentation, would not, if introduced into the blood of an animal, equally act the part of a ferment. Thus would be easily explained the alteration, and the rapid infection of the mass of the blood, in an animal which had received accidentally or experimentally into its veins a certain number of these bacteria—that is to say, of this ferment.'
But two summers passed before M. Davaine was able to procure a sheep affected with the sang-de-rate. It was only in 1863 that he first recognised the constant presence of a parasite, in the blood of sheep and rabbits which had died from successive inoculations with blood taken after death or in the last hours of life. He further proved that the inoculated animal, in the blood of which no parasites were as yet visible with the microscope, had every appearance of health, and that in these conditions the blood could not communicate splenic fever.
'In the present state of science,' Davaine concluded, 'no one would think of going beyond these corpuscles to seek for the agent of the contagion. This agent is visible, palpable; it is an organised being, endowed with life, which is developed and propagated in the same manner as other living beings. By its presence, and its rapid multiplication in the blood, it without doubt produces in the constitution of this liquid, after the manner of ferments, modifications which speedily destroy the infected animal.' 'For a long time,' he repeated, 'physicians and naturalists have admitted theoretically that contagious diseases, serious epidemic fevers, the plague, &c., are caused by invisible animalculæ, or by ferments, but I do not know that these views have ever been confirmed by any positive observations.'