There are lead veins in the Mendip hills which extend through the mountain limestone into the Permian or Dolomitic conglomerate, and others in Glamorganshire which enter the lias. Those worked near Frome, in Somersetshire, have been traced into the Inferior Oolite. In Bohemia, the rich veins of silver of Joachimsthal cut through basalt containing olivine, which overlies tertiary lignite, in which are leaves of dicotyledonous trees. This silver, therefore, is decidedly a tertiary formation. In regard to the age of the gold of the Ural Mountains, in Russia, which, like that of California, is obtained chiefly from auriferous alluvium, we can merely affirm that it occurs in veins of quartz in the schistose and granitic rocks of that chain. Sir R. Murchison observes, that no gold has yet been found in the Permian conglomerates which lie at the base of the Ural Mountains, although large quantities of iron and copper detritus are mixed with the rolled pebbles of these same Permian strata. Hence it seems that the Uralian quartz veins, containing gold and platinum, were not exposed to aqueous denudation during the Permian era. But we cannot feel sure, from any data yet before us, that such auriferous veins of quartz may not be as old as the tin lodes of Cornwall, in which, as well as the more ancient copper lodes of Ireland, some gold has been detected. We are also unable at present to assign to the gold veins of Brazil, Peru, or California, their respective geological dates. But, although enough is known to show that Ovid's line about the "Age of Gold," "Aurea prima sata est ætas," would, by no means, be an apt motto for a treatise on mining, it would be equally rash in the present state of our inquiries to affirm, as some have done, that gold was the last-formed of metals.
It has been remarked by M. de Beaumont, that lead and some other metals are found in dikes of basalt and greenstone, as well as in mineral veins connected with trap rocks, whereas tin is met with in granite and in veins associated with the granitic series. If this rule hold true generally, the geological position of tin in localities accessible to the miners will belong, for the most part, to rocks older than those bearing lead. The tin veins will be of higher relative antiquity for the same reason that the "underlying" igneous formations or granites which are visible to man are older, on the whole, than the overlying or trappean formations.
If different sets of fissures, originating simultaneously at different levels in the earth's crust, and communicating, some of them, with volcanic, others with heated plutonic masses, be filled with different metals, it will follow that those formed farthest from the surface will usually require the longest time before they can be exposed superficially. In order to bring them into view, or within reach of the miner, a greater amount of upheaval and denudation must take place in proportion as they have lain deeper when first formed. A considerable series of geological revolutions must intervene before any part of the fissure, which has been for ages in the proximity of the plutonic rocks, so as to receive the gases discharged from it when it was cooling, can emerge into the atmosphere. But I need not enlarge on this subject, as the reader will remember what was said in the 30th, 34th, and 37th chapters, on the chronology of the volcanic and hypogene formations.
Concluding Remarks.—The theory of the origin of the hypogene rocks, at a variety of successive periods, as expounded in two of the chapters just cited, and still more the doctrine that such rocks may be now in the daily course of formation, has made and still makes its way, but slowly, into favour. The disinclination to embrace it has arisen partly from an inherent obscurity in the very nature of the evidence of plutonic action when developed on a great scale, at particular periods. It has also sprung, in some degree, from extrinsic considerations; many geologists having been unwilling to believe the doctrine of the transmutation of fossiliferous into crystalline rocks, because they were desirous of finding proofs of a beginning, and of tracing back the history of our terraqueous system to times anterior to the creation of organic beings. But if these expectations have been disappointed, if we have found it impossible to assign a limit to that time throughout which it has pleased an Omnipotent and Eternal Being to manifest his creative power, we have at least succeeded beyond all hope in carrying back our researches to times antecedent to the existence of man. We can prove that man had a beginning, and that, all the species now contemporary with man, and many others which preceded, had also a beginning, and that, consequently, the present state of the organic world has not gone on from all eternity, as some philosophers have maintained.
It can be shown that the earth's surface has been remodelled again and again; mountain chains have been raised or sunk; valleys formed, filled up, and then re-excavated; sea and land have changed places; yet throughout all these revolutions, and the consequent alterations of local and general climate, animal and vegetable life has been sustained. This has been accomplished without violation of the laws now governing the organic creation, by which limits are assigned to the variability of species. The succession of living beings appears to have been continued not by the transmutation of species, but by the introduction into the earth from time to time of new plants and animals, and each assemblage of new species must have been admirably fitted for the new states of the globe as they arose, or they would not have increased and multiplied and endured for indefinite periods.[501-A]
Astronomy had been unable to establish the plurality of habitable worlds throughout space, however favourite a subject of conjecture and speculation; but geology, although it cannot prove that other planets are peopled with appropriate races of living beings, has demonstrated the truth of conclusions scarcely less wonderful,—the existence on our own planet of so many habitable surfaces, or worlds as they have been called, each distinct in time, and peopled with its peculiar races of aquatic and terrestrial beings.
The proofs now accumulated of the close analogy between extinct and recent species are such as to leave no doubt on the mind that the same harmony of parts and beauty of contrivance which we admire in the living creation, has equally characterized the organic world at remote periods. Thus as we increase our knowledge of the inexhaustible variety displayed in living nature, and admire the infinite wisdom and power which it displays, our admiration is multiplied by the reflection, that it is only the last of a great series of pre-existing creations, of which we cannot estimate the number or limit in times past.[501-B]