x1 = rλ1, x2 = rλ2 ... xn = rλn, where Σλ² = 1.

Hence

ds² = (Radr / a² − r²)² + R²r²dΔ² / (a² − r²).

where

dΔ² = Σdλ².

Also calling ρ the geodesic distance from the origin, we have

cos h (ρ/R) = a, sin h (ρ/R) = r.
√(a² − r²) √(a² − r²)

Hence

ds² = dρ² + (R sin h (ρ/R))² dΔ².

Putting